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Topic Group 4 of CERME4 on “Argumentation and Proof ” had 15 participants from different 
countries across Europe. During its sessions, no formal presentations of the 9 papers were made, but 
every author had a chance to present her/his main ideas. The discussion was organized around three 
main themes that emerged from the papers prepared for the Topic Group. This report is organized 
likewise, in that it presents an account of the arguments and comments made in the group in terms of 
the three themes rather than in the order in which the discussion occurred. 
The three themes were 

• The meaning of proof in mathematics education 
• Comparing the teaching of proof at school 
• Problem solving and Conjecturing. 

Theme 1: The meaning of proof in mathematics education 
The discussion on “The meaning of proof in mathematics education“ was opened by David A. Reid 
who presented the working group with examples of proofs that raised the central question in his paper, 
“Is there any prototype of proof?”. In line with the analysis in the paper, participants generally rejected 
certain arguments as mathematical proofs and accepted others, even though they were generally not 
able to define the characteristics of a prototype proof. Thus it seemed that when it came to judge 
arguments as proofs or non-proofs there was common ground, regardless of the different 
epistemological positions that participants might have held. 
 
Whether there was common ground concerning teaching approaches towards proof is less clear. It is an 
interesting question, though, whether researchers’ epistemologies have a more significant influence on 
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the teaching approaches they espouse. This still needs further investigation. The “genetic approach to 
proof” presented by Hans Niels Jahnke clearly is an example of a coherent position in this respect. 
Starting from a specific and explicitly stated epistemological position, “to treat geometry in an 
introductory period as an empirical theory”, Jahnke expounds a teaching approach that evolves from 
this epistemological position. First he points out that viewing mathematics introduced to novices as an 
empirical theory provides an explanation for the strong attraction to experimental verification felt by 
students when a conclusion is new and important to them. Second, Jahnke insists that therefore the 
meaning of proof should not be introduced as a replacement or contrast to measurement. Instead 
measurement and proofs should be combined into a “small theory”. Jahnke’s theory provides a nice 
explanation for a phenomenon reported by Küchemann and Hoyles. They found that only a small 
minority of their sample of high attaining school students could give a structural explanation for the 
divisibility of, say, 100! by 31, but even students in this group wanted their argument confirmed 
empirically. The relationship between empirical evidence and proof gains a new meaning in the 
“genetic teaching approach” that is consistent with the background epistemological position explicated 
by Jahnke. Jahnke’s notion that there is a kind of dialectic or mutual support between intellectual 
proofs (to use a term of Balacheff’s (1999), to identify the case when arguments are detached from 
action and experience) and recourse to data (pragmatic proofs) throws a new and refreshing light on 
their relationship and on the seemingly negative findings of Fischbein and Kedem (1982) and Vinner 
(1983)  
Viviane Durand-Guerrier’s contribution suggests that her epistemological position is not likely to be 
based on the same beliefs and principles as Jahnke’s. Though she does not explicitly label the main 
ideas in her paper as an epistemological position, many of them can be read as such. As with Jahnke, 
she makes us aware that we need stronger theoretical backgrounds in order to better understand 
students’ thinking and difficulties. However, the theoretical tools she refers to are distinctively 
different from the theoretical approach of Jahnke. Following Quine and others, Durand-Guerrier claims 
that predicate calculus, in particular “natural deduction” is a powerful tool to analyse proofs “in a 
didactic perspective”. According to Durand-Guerrier logic can help us to understand students’ 
difficulties with proofs, as a logical analysis makes us aware of the various properties of objects and 
their various nature that is silenced so often. Durand-Guerrier emphasizes that logic should also play a 
role in the teaching of proof, in the sense that predicate logic “provides an extension of the classical 
tools used in didactic of mathematics to analyse proofs”. However, in her paper she is not propounding 
the idea that logic should be taught to students, neither is she making any hypothesis about logic being 
a powerful tool for students to understand proofs. Instead, her focus is on mathematics educators, 
teachers as well as researchers.   
Theme 2: Comparing the teaching of proof at school 
Despite the apparent similarities, the teaching of proof presents a great variability across different 
countries. Not many studies have been devoted to the comparison of the teaching of proof; the study 
carried out by Knipping (CERME3) and presented at CERME3, was based on classroom observation.. 
A different perspective is taken by Richard Cabassut who accomplished his analysis through the 
comparison of textbooks. In his paper, Cabassut uses examples of proofs found in French and German 
textbooks to analyse underlying differences in proof concepts and teaching approaches. His cross-
cultural comparisons and analyses indicate that mathematical properties and concepts anchored in the 
curriculum can be one reason why specific proofs occur in textbooks of one country but not of another. 
But Cabassut also suggests that this is not the whole story, as certain mathematical properties are not 
explicitly referred to in a textbook’s proofs, though the properties are explicitly mentioned in the 
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corresponding curriculum. Therefore other factors must have motivated authors of school textbooks in 
their choice of proofs. However, we may still be some distance away from finding the tools to decipher 
those factors. For example, it seems that different functions of proofs, as a category for analysing 
textbook proofs, do not reveal underlying cultural differences in teaching approaches, at least 
comparing German and French text books. Also Cabassut’s analysis of arguments, based on the 
Toulmin model, does not obviously uncover cultural differences in proof concepts. Two divergent 
conclusions can be drawn from this. i) There are no significant cultural differences between proofs in 
German and French textbooks. This conclusion would suggest that word-for-word translations of 
textbooks should be usable without any problem in the other country. Those who have taught in French 
or German schools might doubt this. ii) There are cultural differences, but to reveal them remains a 
challenge. International groups such as those meeting at CERME provide a possible avenue to a better 
understanding of cultural differences in mathematics education. 
 
Kirsti Nordström in her contribution to the working group also takes a comparative approach to 
textbook analyses, but from a very different perspective. Her motivation for these analyses resides in 
the learner’s perspective and the fact that textbooks and teachers guides influence the practices and 
choices teachers make in the classroom. Nordström rises the important question of how proof items in 
textbooks “relate to students’ access to proofs”. By examining two series of commonly used Swedish 
upper secondary school books, she found that different definitions for proof occurred in the same 
textbook and that the notion of proof was often left implicit or not defined in a mathematically 
appropriate and meaningful way. This is likely to lead to substantial difficulties for teachers and 
students and, as Nordström reminds us, the important question remains: “By what means is it possible 
to make proof and its different aspects visible to students at the upper-secondary level?” 
 
The longitudinal study undertaken by Hoyles and Küchemann compares not across cultures and 
textbooks, but students’ responses over time. Their large-scale survey using written questionnaires to 
investigate students’ understanding was supplemented by case studies to identify teaching practices, 
which may have influenced these responses.  
 
These various studies and the resulting group discussion underline the importance of using a variety of 
methods in our research to overcome the limitations of any single method, and the importance of 
considering teaching practices more globally, not just taking a single perspective, be it student results, 
curriculum documents or text books.  
Theme 3: Problems and Conjecturing  
Students’ approaches to mathematical problems and students’ production and validation of conjectures 
were discussed in the light of three papers contributed by members of the working group. Lourdes 
Figueiras & Jordi Deulofeu presented observations and analyses of first year university students’ 
conjectures for Heron’s Problem. Oleksiy Yevdokimov described the conjecturing processes of 
secondary school students about properties of special lines in a triangle. Consuelo Cañadas Santiago & 
Encarnación Castro Martínez presented an analysis of secondary students’ (inductive) reasoning in the 
context of the problem of adding two even numbers. 
 
One suggestion put forward in the ensuing discussion was that slight changes in the formulation of a 
task could radically alter the way it was solved and consequently the way students prove the 
correctness of their solution. For example, Figueiras & Deulofeu had posed Heron’s Problem (in their 
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university course for future primary student teachers) as follows: “Let s be a line and A and B two 
points at the same side of s. For which point P in s is AP+PB the shortest way joining A and B?”. 
Knipping had exposed a similar group of students at her university to Herons’s Problem in a slightly 
different way. In her formulation it was not assumed that A and B were points at the same side of the 
line s, but only that they were not on the line s. This slight difference seems to have mattered here: in 
particular, it allowed students to make productive use of their solution of the case where A and B are 
on opposite sides of line s, to solve the more elusive standard case. On the other hand, in a subsequent 
investigation by Küchemann, using wording similar to that of Figueiras, he found that exhorting 
students to work dynamically by inserting the sentence “Explore what happens to the distance AP + BP 
as P moves on S” seemed to make no difference to their approaches. 
 
Comparative analyses like this may make it possible to understand students’ conjectures in the context 
of how tasks and problems are formulated and posed to students. It may also lead to a better 
understanding of the interrelation of tasks, conjectures and students’ engagement in mathematical 
reasoning. Yevdokimov’s work with open tasks such as “Find out as many properties of a bisector of a 
triangle as you can”, lead to an interesting working group discussion. Not all students were in every 
case able to prove the conjectures they came up with. This suggests that even if students find the 
process of conjecturing to be fruitful and satisfying they might still be discouraged by the task of 
proving. This runs counter to the commonly held hypothesis that the production of conjectures 
motivates students to want to construct proofs. Thus we have to be aware of the potential of tasks not 
only for producing conjectures, but also in respect of students’ aptitude for proving (or refuting) their 
conjectures. 
 
This problématique is also provoked by the paper of Cañadas Santiago & Castro Martínez. The authors 
had observed students who engaged in justifying the result obtained when adding two even numbers 
and found that students would use “inductive reasoning” to justify their conjecture. Again, the difficult 
part for the students was not coming up with a conjecture, even for the general case, but in deriving a 
generally true justification. Promising research on this problématique has been done by some of our 
Italian colleagues who have introduced the notion of “cognitive unity”. This aims to describe the 
complex relationship between the process of producing a conjecture and proving it. A paper on the 
notion of cognitive unity was presented at CERME3 (Pedemonte, 2003). Applying the notion to the 
relatively simple task used by Santiago & Martínez suggests that if students form a conjecture on the 
basis of empirical evidence only, then they will try to construct a proof on the same basis. 
Küchemann’s current work with teachers, using similar simple tasks, suggests that in part students’ 
difficulties may be a matter of initiation In fact adopting deductive, as opposed to empirical, 
approaches may not be so natural as it could be expected and seems to require a specific didactic 
intervention. 
 
As a complement to the notion of ‘proof prototype’ discussed in Theme 1, it is sometimes useful to 
think of ‘task prototypes’. Thus for example, Heron’s task in the form presented by Figuieras would 
seem to be especially useful for generating conjectures that turn out to be false (and hence need to be 
refuted). It is also a task where some students might fruitfully draw on experiences in physics (angles 
of incidence and reflection, or the notion of a weight supported by a string attached to the focii of an 
ellipse...). Consuelo Cañadas spoke of the classic task, “If n straight lines all intersect each other 
(inside a circle), how many regions do they make (inside the circle)?”. It is difficult (impossible?) to 
solve this task generically, i.e. simply by looking at one (general) case. On the other hand the task can 
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be approached ‘incrementally’ by looking at what happens when another line is added (the nth line 
produces 1+n–1 = n new regions), but this is relatively complex. By contrast, consider another classic 
task, “If n straight lines all intersect each other, how many points of intersection are there?”. This can 
be solved generically (each line intersects the n-1 other lines, but this is counting each intersection 
twice as it is formed by two lines, so there are n(n–1)/2 points of intersection). Of course, as with the 
previous task, it can also be tackled incrementally or by induction from specific cases. 
Küchemann has recently been using the following task in secondary schools: “Find the sum of three 
consecutive numbers. What do you notice? Prove your result.” Students tend to notice many different 
things and tend to work empirically. Thus if they notice that the sum is 3 times the middle number, 
they tend to confirm this by means of examples. Of course, the task can also be approached 
structurally, along the lines of ‘The first number is 1 less than the middle number and the third number 
is 1 more than the middle number; hence the sum is equivalent to 3 times the middle number”. 
Küchemann would argue that students would benefit from becoming familiar with arguments of this 
sort, which are often not difficult to understand. However, not all tasks can be tackled in this way. 
Take this example: “Find the product of three consecutive numbers. When is the result a multiple of 
24? Prove your finding.”. Here it is fairly straightforward to find out and prove that the condition is 
satisfied when the first number is even; however, it is harder to realise that it is also satisfied when the 
middle number is a multiple of 8. Thus, in the school context at least, this a good example of a task 
where students might benefit from using an empirical approach, and indeed from generating lots of 
data, for example by using a spreadsheet. The argument here is that teachers and students would both 
benefit from not only knowing that there are different ways of solving problems and constructing 
proofs but that different tasks lend themselves to different approaches. 
 
As a final remark rising from the group discussion we would like to stress the importance of grounding 
the notion of proof in problem solving context, that means developing a culture of arguments 
supporting one’s own solution through the systematic use of open problems, where producing a 
conjecture accompanied by the arguments supporting it. Tasks design becomes crucial and as clearly 
emerged from the discussion both the individual and the social component of the proving process. 
Generally speaking, it becomes interesting to identify contexts where mathematical knowledge might 
emerge from solving problems and validating solutions, according to different school levels and 
different curriculum requirements.  
Never the less, overcoming the possible gap between arguments supporting a statements (for instance, 
empirical evidence based on a limited number of example, or authoritative reasons) and a mathematical 
proof (i.e. arguments acceptable in the mathematics community) remains a major difficulty requiring 
the specific intervention of the teacher, who as a cultural mediator introduces students to mathematics 
practices, and among others to proving.   
Although any contribution to the working group directly addressed the issue of teachers training, the 
key role recognized to the teacher - both in designing of a problem solving environment and in guiding 
the evolution towards shared mathematically acceptable arguments – asks further investigation in this 
field.  
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ARGUMENTATION  AND  PROOF  IN EXAMPLES TAKEN 

FROM FRENCH AND GERMAN TEXTBOOKS 

Richard Cabassut, IUFM d'Alsace, Didirem Paris 7, France 

 
Abstract:  A study of French and German curricula of secondary schools have shown that 
arguments of plausibility and arguments of necessity are both encouraged in 
mathematic teaching. We show that the mathematics textbooks used in these 
curricula give examples of argumentations and proofs involving both kinds of 
arguments. These examples illustrate the theoretical frame presented in this paper 
and chosen to explain the use and the combination of arguments which can be 
understood through the concept of the function of validation. 
 
We have shown in [Cabassut 2003, 2005] that plausible reasoning, pragmatic proofs, 

visual perception or induction are present in validations used in the mathematical 

curricula of secondary schools in France and Baden-Wurtemberg. We expose here 

the theoretical frame chosen to compare the validation of mathematic statements in 

France and in Germany. 

1 The theoretical frame 

1.1 Toulmin’s theory of arguments 
From [Toulmin 1958] we consider an argument as a three-part structure (data, 

warrant, claim). We apply a warrant to data to produce a claim. We call arguments of 

plausibility the “arguments in which the warrant entitles us to draw our conclusions only 

tentatively (qualifying it with a ‘probably’) subject to possible exceptions (‘presumably’) or 

conditionally (‘provided that …’)” [Toulmin 1958, 148]. Toulmin calls them ‘probable 

arguments’. As probability has a strong mathematical connotation, we prefer the term 

‘argument of plausibility’. It’s also a reference to the plausible reasoning of [Polya 

1954] described under the name of abduction by  [Peirce 1960, 5.189]: “The surprising fact 

C is observed, but if A were true, C would be a matter of course; hence, there is reason to suspect 

that A is true”. We call arguments of necessity “the arguments in which the warrant entitles us 
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to argue unequivocally to the conclusion” [Toulmin 1958, 148]. The ‘modus ponens’ is an 

example of argument of necessity: A is observed, and ‘if A then C’ is true, then C is 

necessarily true. We call ‘validation’ a reasoning that intends to assert, necessarily or 

plausibly, the truth of a statement. A ‘proof’ is a validation using only arguments of 

necessity and an ‘argumentation’ is a validation using arguments of plausibility and 

maybe arguments of necessity.  

[Perelman, Olbrechts-Tyteca 1969] distinguishes different audiences to which the 

validation is addressed. The self as audience and a particular audience are subject to 

persuasion which is grounded on the specificity of the character of the audience. A 

universal audience is subject to conviction which is based on rationality. We can 

consider that these audiences or their rationalities are attached to the institutions in 

which the validation is established.  

For [Balacheff 1991, 188-189] “argumentation and mathematical proof are not of the same nature: 

The aim of argumentation is to obtain the agreement of the partner of the interaction, but not in the 

first place to establish the truth of some statement. As a social behaviour it is an open process, in 

other words it allows the use of any kind of means; whereas, for mathematical proofs, we have to fit 

the requirement for the use of knowledge taken from a body of knowledge on which people 

(mathematician) agree”. We can consider that in a mathematical institution where a 

statement is proved (for example in a journal of mathematics, or in a mathematical 

seminar), the people (the mathematicians) agree with the mathematical knowledge 

that only admits arguments of necessity. The arguments of necessity in a 

mathematical proof of a statement establish the necessity of the truth of this 

statement. When a mathematician uses an argument of plausibility to sustain a 

conjecture, or as a heuristic to look for the proof of an assertion, he doesn’t make his 

assertion more true or more plausible from the point of view of mathematical theory. 

This mathematician can obtain the agreement from other mathematicians on the 

plausibility of his conjecture, but this agreement will be based on intuition, 

experimental methods or everyday mathematical practice using inferences taken from 

outside of mathematical theory. For example, plausible reasoning is not admitted in 
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mathematical theory. In an other institutions, for example in biology classes, or in  

maths classes during the heuristic phase of problem-solving, or in a pupils’ group 

discussing the proof of a statement, an argumentation that uses arguments of 

plausibility will establish the plausibility of the statement if the arguments of 

plausibility employed are part of the body of knowledge of this institution. In this 

case all the members of this institution agree with the argumentation. In mathematical 

institutions or other institutions, the partners’ agreement means that arguments 

employed are in the body of knowledge shared by all the members of the institution. 

Mathematical institutions have formal theories to prove statements. Other institutions 

often have informal theory to argue for statements. “Demonstrative reasoning has rigid 

standards, codified and clarified by logic (formal or demonstrative logic), which is the theory of 

demonstrative reasoning. The standards of plausible reasoning are fluid, and there is no theory of 

such reasoning that could be compared to demonstrative logic in clarity or would command 

comparable consensus” [Polya 1954]. 

To explain the combination of arguments of necessity and arguments of plausibility 

in a same validation we need to identify the different functions of a validation. 

1.2 Functions of a validation 

De Villiers proposed different functions of the proof in mathematics : “verification 

(concerned with the truth of a statement), explanation (providing insight into why it is true), 

systematisation (the organisation of various results into a deductive system of axioms, major 

concepts and theorems), discovery (the discovery or invention of new results), communication (the 

transmission of mathematical knowledge)” [De Villiers 1990, 18]. We extend these functions 

of the proof to the validation in the teaching of mathematics. For the function of 

verification we distinguish two functions: the function of plausibility verifies the 

plausibility of the truth of an assertion by means of arguments of plausibility; the 

function of proof verifies the necessity of the truth of an assertion by means of 

arguments of necessity. 
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2 Examples from textbooks 

2.1 mathematical properties available but not used 
We consider a proof of Pythagora’s theorem. We use Clarke’s methodology looking 

at the differences for similar proofs. The first proof is found in a French textbook1.  

 

 

The proof is based on a puzzle technic2 (pragmatic argument) where it is asserted 

without mathematical argument that the inner quadrangle JILO is a square. At this 

class level, it could be proved that JILO is a lozenge and that ∠JIL = 90° by 

consideration of angles. We assume that this fact is not proved because the main 

function of this proof is explanation. Pythagoras’ theorem is explained as a theorem 

on the equality of areas: the area of the inner square equals the area of the two other 

squares which appears clearly in the puzzle technic. To prove that JILO is a square 

                                                
1 The French textbook is : Le nouveau Pythagore class 4ème , 1998,  Hatier, 165.   
2 [Knipping 2003, 84] observes classes where this proof is done. She mentions that the proof was known from the old 
Hindus. 
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would distract from the main explanation in terms of areas.  We have found in 

Baden-Wurtemberg a textbook3 from a similar grade level with the same kind of 

proof where it is not justified that the inner quadrangle is a square. 

 

 Both textbooks prefer a visual argument for which the inner quadrangle looks very 

plausibly like a square. The function of verification of the plausibility and the 

function of explanation make it so that a visual argument is preferred to a 

mathematical argument on angles. The German textbook used explicitly the isometric 

triangle property which is available; the French textbook used implicitly this property 

which is not available. 

We have found other textbooks4 where it is proven5 that the inner quadrangle is a 

square with rigor and where the function of verification of the proof is stronger than 

in the previous textbooks. 

 
                                                
3 The German textbook is : Lambacher Schweizer class 9, Klett Verlag, 1997, 70.  
4 For example : Math 4ème, Bordas, 1998, 203. 
5 Using properties of angles. 
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2.2 mathematical property not available 

 

The proof of the property of the sum of angles in a triangle is illustrated in two 

textbooks. In both textbooks, the validation begins with an argumentation using 

pragmatic arguments (in the German textbook6: action with a Meccano game and 

measurement, in the French textbook7: cutting out, measurement), visual argument 

and mathematical arguments (calculation of the sum of angles). This previous 

validation develops two functions: the function of discovery of the property of the 

sum of angles in a triangle, and the function of the verification of the plausibility of 

the result. With the German Meccano technic, explanation of the proof is central: 

when the angle α decreases, the angle γ increases in a compensating way. The last 

German proof tries to develop the function of explanation, by determining the 

compensation β between α and γ, and the function of verification of the proof, by 

                                                
6 The German textbook is: Lambacher Schweizer class 7 (12-13 years old), Klett Verlag, 1994, 105. 
 
7 The French textbook is: “Nouveau transmath class 4ème” , 1997,  Nathan, 225, class 5ème (12-13 
years old).  
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using mathematical arguments of necessity. The use of mathematical argument of 

necessity seems to avoid the use of pragmatic arguments. In fact, there is a visual 

argument in figure 2 to assert that the angle β in C is equal to the alternate-interior 

angle β in B. Holland [2001, 56-57] shows that a formal proof without visual 

argument needs the technology of orientated angles: this technology is not available 

at this class level8. The proof with orientated angles without visual argument is the 

following: 

 

step data of the 
step 

warrant of the step claim of the step 

1 hypothesis  ABC triangle with α=([AB),[AC)), 
β=([BC), [BA)), γ=([CA), [CB)) 

2 hypothesis  u is half straight line with C as 
origin, parallel to g, and with 
opposite direction to the half 

straight line [BA) with B as origin. 
A 

3 hypothesis  v  is the other half straight line of 
origin  C completing the half 

straight line [CA) 
4 hypothesis  α’= angle(u,v) 
5 hypothesis  β’=angle([CB),u) 
6 1, 2, 3, 4 definition  of corresponding angles α et α’ are corresponding angles 
7 1, 2,  5 definition of alternate-interior angles β et β’ are alternate-interior angles 
8 
 

2, 6 theorem of corresponding angles in 
case of parallelism 

α=α’ 

9 2, 7 theorem of alternate-interior angles 
in case of parallelism 

β=β’ 

10 3 definition of straight angle ([CA),v) = 180° 
11 1, 2, 3, 4, 5 property of angles ([CA),v)= ([CA), [CB))+ ([CB),u) 

+(u,v) = α’+β’+γ 
12 8, 9, 11 calculus α+β+γ=180° 

 We can ask why the German textbook proposes another proof with a non 

mathematical argument (the visual argument revealed by Holland) following the 
                                                
8 class 7 for Germany and 5ème for France. 
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validations with Meccano or measurements proof which used also non mathematical 

arguments. On one hand, using visual arguments helps to develop the function of 

explanation and the function of verification of the proof, even if this last function is 

not completely accomplished in a formal way because of the visual argument; it 

could be considered as accomplished in a mathematics class where a visual argument 

could be, sometimes, used as an argument of necessity, for example in the cases in 

which orientation is involved. On the other hand, the function of systematisation is 

developed in the last proof because previous mathematical results9 are used to 

establish, in a deductive way, a new result.  

 

 

                                                
9 Calculation rules, definition and properties of angles: corresponding, alternate-interior, supplementary. 
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3 Conclusion 
We have seen that arguments of plausibility can be used to develop the functions of 

explanation and plausibility, or to replace a missing mathematical argument to help to 

develop the function of systematisation. We have seen that mathematical arguments 

can be used to develop the functions of proof, explanation or systematisation. In these 

examples both kind of arguments are combined in a same validation. In [Cabassut 

2002, 2003, 2005] we show other examples10 of these combinations. On one hand, 

there are non mathematical validations in others institutions11. Mathematical 

arguments can join non mathematical arguments to make a validation12 in the 

institution that teaches mathematics: this new hybrid validation is called a didactic 

validation, and is created by transposing a validation used in a non-mathematical 

institution onto a validation used by institutions that teach mathematics. In this case, 

special functions are developed (function of explanation in the previous examples, 

function of discovery to prepare the limits in [Cabassut 2002]). On the other hand, the 

replacement13 of some mathematical arguments (available or not) by non-

mathematical arguments is a transposition of a mathematical proof onto a didactic 

validation where the functions of explanation, plausibility or proof, and 

systematisation can be developed. In this sense didactic validation is the double 

transposition of mathematical proof and of the validation of non-mathematical 

institutions. The combination of arguments of plausibility and mathematical 

arguments are generally not allowed in a context of assessment where the functions 

of communication, systematisation and proof are developed as shown in [Cabassut 

2005]. The pupils have to understand the change in the didactical contract depending 

on what functions of the validation are developed and on what combinations of 

arguments are allowed. The main difficulty is that these two kinds of arguments refer 

to two different conceptions of truth. 

                                                
10  like formula of the circumference and  area of a circle. 
11 like daily life or experimental sciences classes where pragmatic arguments can be sufficient. 
12 for example for the sum of angles of a triangle: measurement, use of Meccano or cutting. 
13 for example in the proof of Pythagora’s theorem or in the last German and French proofs of the sum of angles of a 
triangle. 
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A PROPOSAL OF CATEGORISATION FOR  
ANALYSING INDUCTIVE REASONING

Mª Consuelo Cañadas Santiago, Universidad de Zaragoza, Spain
Encarnación Castro Martínez,      Universidad de Granada, Spain

Abstract: In this paper we present an analysis of the inductive reasoning of twelve Spanish 
Secondary students in a mathematical problem-solving context. Students were 
interviewed while they worked on two different tasks. Based on Polya´s steps and Reid’s 
stages for a process of inductive reasoning, we propose a categorization of seven stages 
for analyzing this kind of reasoning. In this paper we present some results of a previous 
study of Cañadas (2002).   

Proof appears to be a real problem at different educational levels. On one hand, 
although Spanish pre-service teachers are accustomed to formal proof, they have 
difficulties in proof teaching (Cañadas, Nieto & Pizarro, 2001). On the other hand, 
Secondary students do not make as much progress as they are supposed to in their 
reasoning. One possible reason lies in the fact that they canno t suddenly acquire the 
necessary reasoning skills for developing formal proof. They need a period of time to 
transform their daily reasoning into formal one (Jones, 1996). Some studies show that 
Primary and Secondary students are able to formulate conjectures, examine and justify 
them if they start working from particular cases (Lampert, 1990; Healy & Hoyles, 
1998). Some of these actions related to conjecturing are part of the inductive reasoning 
process. We are interested in analyzing the way Secondary students go from particular 
cases to generalization.   

This paper consists of four main parts. First, we present the theoretical framework of the 
study, which includes our proposal of categorization for inductive reasoning. Second, 
we outline the methodology of our empirical study. Third, we present some sample data 
organized according to the stages of our categorization and finally, we discuss some 
results of the study.   

THEORETICAL FRAMEWORK 
Inductive reasoning 
Inductive and deductive reasoning are the two traditional types of reasoning considered. 
We will focus on the first one although we are conscious that sometimes it is very 
difficult to separate them in students´ work. Inductive reasoning is very important from 
a scientific viewpoint because it allows us to obtain scientific knowledge (Pólya, 1967). 
In the particular case of mathematics teaching, Pólya indicates that inductive reasoning 
is a method of discovering properties from phenomena and of finding  regularities in a 
logical way. We will consider that inductive reasoning in Mathematics Education is a 
reasoning process that begins with particular cases and produces a generalization from 
these cases.  

There is a confusing term which involves proof and reasoning: mathematical induction 
(MI). It is a formal method of proof based more on deductive than on inductive 
reasoning. Some processes of inductive reasoning conclude with MI but this does not 
always occur. For example, we can not construct a correct proof by MI to justify that 
the angles in a triangle have a sum of 180º because the set of all triangles is not ordered.  

From the curricular perspective, we find that at Secondary level and in the two courses 
before the university, mathematics has as the main aim developing a certain level of 
reasoning and abstraction. At the end of these studies, students must master operations 
of abstract thinking that allow them to understand conjecture formulation, observation 
of particular cases, experimentation, hypothesis validation, and to elaborate 
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explanations and theories structured in some way, etc. (M.E.C., 1989, p. 74). These 
actions are related to inductive reasoning, as we will see. 

Stages in inductive reasoning  
Pólya (1967) indicates four steps of a process of inductive reasoning: observation of 
particular cases, conjecture formulation based on previous particular cases and 
conjecture verification with new particular cases. In this context of empirical induction 
from a finite number of discrete cases, Reid (2002) describes these stages: observation 
of a pattern, the conjecturing (with doubt) that this patterns applies generally, the testing 
of the conjecture, and the generalization of the conjecture. Based on these studies and 
taking into account our empirical work (Cañadas, 2002), we consider seven stages as 
describing the inductive reasoning process. In the following paragraphs, we explain 
these stages and we illustrate some of them in the context of the task of determining the 
maximum number of regions formed by n lines.   

1. Observation of particular cases. The starting point is experiences with particular 
cases of the problem posed.  

2. Organization of particular cases. The students´ responses are different when they 
are able to organize particular cases in some way. They use different strategies to 
systematize and facilitate the work with particular cases.  

3. Search and prediction of patterns . Observing particular cases (organized or not), 
we can think about the next, unknown case. In this sense, students are thinking 
about a possible pattern just for the cases they are observing. They are not thinking 
about applying the pattern to all  cases.  

4. Conjecture formulation. A conjecture is a statement based on empirical facts, 
which has not been validated. This “conjecture formulation” is like Reid’s 
“conjecturing (with doubt)” which means making a statement about all possible 
cases, based on particular ones, but with an element of doubt. A clear example for 
this is when some students claim: “I think that you get the double of the number of 
straight lines” but they are not sure about that because they are thinking of what 
happens in the first two particular cases.  

5. Conjecture validation. When students formulate a conjecture with doubt, they are 
convinced about the truth of their conjecture for those specific cases but not for 
other ones. At this stage, they try to validate their conjectures for new specific cases 
but not in general. In our example, they might validate their conjecture by drawing 
more than two lines.    

6. Conjecture generalization. Mathematics patterns are related to a general rule, not 
only to some cases. Based on a conjecture which is true for some particular cases, 
and having validated such conjecture for new cases (conjecture validation), students 
might hypothesize that the conjecture is true in general.  

7. General conjectures justification. The first step on the way to confirm or reject a 
general conjecture is validating it with particular cases. But this is not enough to 
justify a generalisation. It is necessary to give reasons that explain the conjecture 
with the intention of convincing another person that the generalization is justified. 
At this point, a formal proof can provide the final justification that guarantees the 
veracity of the conjecture.  

These stages can be thought of as levels from particular cases to the general case 
beyond the inductive reasoning process. Not all these levels necessarily occur, there are 
a lot of factors involved (as will be discussed below).  
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METHODOLOGY 
The problem posed 
Cañadas (2002) chose two tasks to analyze inductive reasoning in a group of twelve 
Spanish Secondary students. Here we have chosen one of the tasks considered in that  
study to illustrate some of the results of the large set of data gathered. This task was 
proposed to the students in an interview context in the following way: 

“What is the maximum number of regions you can get in the plane if you draw of 
straight lines?” 

We notice here some specific characteristics of this problem that are considered for our 
analysis. The correct answer was unknown by the students so it is a problem for them. 
We attend that students recognize the general pattern. For this reason, we do not 
mention the number of lines they have to draw. Students must notice the functional 
relationship between the number of lines and the number of regions. This relationship 
relates to a second degree polynomial, which appears in Spanish Secondary curriculum.  

Another important aspect was the way of representation. Although we posed the task in 
a verbal way, one of our interests is to analyze in which type of representations the 
students express their conjectures and their own justifications.  

The correct answer was unknown to the students so it can be considered a problem for 
them. All the students started by drawing straight lines when they heard the problem. 
We show in what follows a correct (not the unique) way to solve this problem.   

 
 
               
 
 
Continuing with particular cases, we can get the following data that we organize in a 
table: 

Num. Straight lines Num. Regions 
1 2 
2 4 
3 7 
4 11 
5 16 
… … 

With these data, we observe that with the first straight line, we get two regions; when 
we draw two lines, we get four regions (two more than in the previous case); when we 
draw three lines, we get seven regions (three more than in the previous case); when we 
draw four lines, we get eleven regions (four more that in the previous case), etc. 
Generalizing this pattern, we can say that when we draw the nth line, we get n new 

regions. In this sense, we can write the number of regions as ∑
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2 straight lines 
4 regions  

3 straight lines 
7 regions  
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After students´ conjecture formulation, they were asked to justify their conjectures. At 
Secondary, we did not expect for a formal proof. Our aim was to analyze if students can 
develop a particular way to justify their own conjectures and what characteristics these 
ways of justification have.   

Interviews 
We used individual interviews to observe the students' reasoning. The interviewer was 
one of the researchers and her aim was to propose the problem to the students and ask 
them questions in order that they explain what they were doing. She had an interview 
plan which allowed her to guide students though questioning so that we could observe 
their reasoning from particular cases to generalization.  

Students 
Secondary is an adequate level to investigate what happens to inductive reasoning in 
this kind of problem from content and cognitive viewpoints. In Primary, mathematics is 
strongly connected to empirical facts and didactical materials. Spanish curriculum 
claims for Secondary that empirical-inductive reasoning must be reinforced in parallel 
to the use of deductive reasoning. In this sense, we observe that there is an evolution 
from the basic level of mathematics, based on empirical work and inductive processes, 
to high level mathematics, based mainly on mathematical structures and relationships 
among them.  

We interviewed twelve Spanish students (six girls and six boys) from the four years of 
school before going to university (14-18 years old). We choose three students from each 
year with different academic results in order to obtain a wide variety of responses.    

DATA COLLECTION AND ANALYSIS 
We collected data in three complementary ways: the interviews were recorded on  audio 
tape, we gave worksheets to the students so that they could write their work (if they 
wanted to) and the interviewer took notes during and after each interview about relevant 
details that could not be recorded on the tape. 

We analyze these data in a qualitative way using Nud*ist revision (N4). This program 
allowed us to see the data in a structured way and to discover details, patterns and 
relations that would be more complicated to discover by hand.  

For presenting and analyzing the data, we symbolize the students as 1, 2, 3 and 4 
depending on the year to which s/he belongs to. A, B or C indicates high, medium or 
low academic results. For example, 3A is a third year student whose academic results 
are higher than her/his classmates. 

In our analysis, we notice that not all the stages in inductive reasoning are necessarily 
present in all tasks and not all students show the same stages for the same task. 
However, there are two relevant characteristics because they appear in all the stages: 

- Spontaneity. We analyze if students were able to advance in their reasoning by 
themselves or, on the contrary, they need or even required the interviewer 
intervention.  

- Representation mode. We posed the problem in the verbal language. However, we 
consider four possible ways to express their reasoning related to this problem: verbal, 
arithmetic, geometric and algebraic.  

Moreover, we noticed some general characteristics that facilitate the advance of one 
stage to the next one. These characteristics allow us to compare the work of these 
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students in each stage but they can not be considered as sub-stages because there is no 
order relation among them. We summarize this in table 1: 

Table 1. Stages and characteristics 
Stages Characteristics  

Observation of particular cases 
Number of particular cases 
Type of particular cases 
Systematic way 

Organization of particular cases Tables 
Search and prediction of patterns Based on… 
Conjecture formulation Use of school knowledge 
Conjecture validation Based on… 
Conjecture generalization Characterization of even numbers 

General conjecture justification 
Justification necessity 
Based on particular cases 
General case 

RESULTS  
We will comment our results using the categorization described above and the related 
characteristics. We will summarize some of the main results in two tables. In table 2 we 
present the responses related to the first two stages which are related to particular cases. 
In table 3 we summarize results mainly related to conjectures.   

Table2. Particular cases 
Student Spontaneity Number SystematicOrganization 

1C  4 x  
1B x 5  x 
1A x 4  x 
2C  3  x 
2B  4   
2A x 4 x x 
3C x 5  x 
3B x 8 x  
3A  5  x 
4C  4   
4B x 5 x x 
4A x 3 x  

-  Observation of particular cases. As we can see in table 2, seven students turned to 
particular cases in a spontaneous way, without any interviewer intervention. Finally (in 
the rest of the cases with the interviewer’s suggestion), all of them considered a number 
of particular cases higher than three, so their work was similar in this respect. This 
common fact is relevant because they considered (some of them, explicitly) that the 
more  particular cases they considered, the easier it would be to obtain a pattern. They 
had made a translation from verbal representation to the graphical one.  
One difference in work with particular cases that had influence on the outcome of the 
problem solution was the systematic way of drawing the straight lines. 1C, 2A, 3B, 4B 
and 4A took into account the order of particular cases, starting by drawing one line and 
they continued with successive cases. In other cases, the students tried with different 
number of lines in no order. For example, 4C drew three lines and the next particular 
case  he considered was drawing eight lines.  

- Organization of particular cases. Organizing particular cases can make it easier to 
observe a pattern. All of the students at this stage were able to express the particular 
cases in an arithmetic representation. As we can see in table 2, seven of the students 
organized their particular cases in tables or equivalent ways like lists of numbers.  
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- Search and prediction of patterns. The first pattern we observed in the students’ 
reasoning was in graphical representation, when most of them decided that they had to 
draw the new line for a particular case, intersecting as many previous lines as they 
could. 
We observed that it is very difficult to formulate a conjecture for students who have not 
organised the data.  

- Conjecture formulation. All of the students base their reasoning on the particular 
cases they have considered and as it is very difficult for them to obtain new particular 
cases, they refer to their knowledge about linear relationships. In this sense, we 
observed students who thought that they would get one more region than the number of 
lines they drew; students who thought that they would get twice as many regions; and 
students who tried to establish a proportional relationship. They were not convinced of 
these conjectures. They formulated them with some doubt because they could not be 
sure they were is true in general.  

-  Conjecture validation. In the previous stage, they simultaneously try to validate the 
conjectures with particular cases. It is the method they use to be more convinced about 
their own conjectures. Some students used particular cases to accept the conjecture. And 
for other students, these cases allowed them to notice that they had formulated an  
invalid conjecture. For example, when 1A thought that he would get twice as many 
regions, he claimed: 

1A: yes. With two lines, four regions. Then with three lines, I must get six… but… no because I get 
seven.   

All of the students formulated a conjecture but in many cases, these conjectures were 
not correct. They observed whether their conjecture were true for the particular cases 
they considered before. The following reaction of these students´ next was to verify 
their initial conjectures with all the particular cases they were able to draw. When they 
had a conjecture that was valid for them, they formulated a conjecture for the general 
case.  
  Table 3. Conjectures  

Linear 
Student Infin. 

 
Simple 

relation 
 n+1 2n Rule of 3 

 
Recurr. 

 

No recurr. 
Generaliz. 

1C  x  x    
1B  x  x    
1A  x x x x   
2C x x  x x x  
2B x x      
2A x x x   x x 
3C  x  x  x  
3B x   x  x  
3A x x  x    
4C x x  x x x  
4B x   x  x  
4A x x  x  x  

-  Conjecture generalization. Eight students did not recognize the functional 
relationship between the number of straight lines and the number of regions at the 
beginning of their reasoning, although they had been working with some particular 
cases. These students claimed that, as they can draw as many lines as they want, they 
can get an infinite number of regions. The interviewer tried to guide them towards the 
objective of the problem.  
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The second general conjecture was considered by all the students except 3B and 4B. 
These ten students noticed that the more lines they draw, the more regions they get. This 
fact is indicated in table 3 as “simple relationship”.  
All the students except 1A, 2B and 3A used algebraic language to express their 
conjecture for the general case. They clearly kept in mind the link between this kind of 
language and the generalization process.   
Seven students noticed the recurrence relationship, observing the difference between 
two consecutive particular cases, although not all of them expressed it in the same way. 
Most of them, although they tried to use  algebraic language, were able to express the 
recurrence in arithmetic or verbal language. In general, they had difficulties expressing 
the recurrence relationship in algebraic terms. For example, we observed student 3B, 
who feels completely confused in this sense:  

3B: uff! [...] the difference between this case and the next one, we consider "z". Then "z" will be the 
difference and "x" is the number of lines. "y" is another number of  regions and "a" is another number 
of regions. Then "z" will be... will be… ufff, I don’t know.... […]. Let's see, here we have a set of 
regions, they will be "x", "y" and "h". Then the differences between  "x" and "y" will be "z". The 
difference between "y" and "h" will be “z+1”. The difference between "h" and "j" will be “z+2”. 

Other students noticed that the recurrence relationship is useful on some occasions but 
not always. For example, 4B claims: 

[...] I don’t know how to express numbers.. there is something here that not... I don’t know how to 
write that because if I use the number of lines that we had in the previous case, then I need to know 
the other number... and that number is what we had in the previous too plus…   

But although some students recognize the limitations of the recurrence relationship, just 
one of them (2A) detected a different way to generalize the functional relationship.  

-  General conjecture justification. No student recognized the necessity of justifying 
their result on their own. They saw the result as an evident consequence from particular 
cases, without needing any additional justification to be convinced of its truth.  

DISCUSSION  
We show a categorization of seven stages for describing the inductive reasoning 
process. These have arisen from concrete tasks but they have a general character that 
permit us to use them for other problems. Every stage admits some characteristics that 
depend on a number of factors, such as the kind of task or the students involved. We 
have presented them in a general way, so they might be applied for other problems, too.  

Inductive reasoning appeared implicitly or explicitly in the work of all the Secondary 
students interviewed. Students turned to particular cases when they tried to get a general 
pattern, so we can conclude that inductive reasoning appears naturally at these 
educational levels. These students show a tendency to take an empirical approach rather 
than to work with mathematical structure. We are now collecting new Spanish data that 
suggests the same idea, which is in contrast with the curricular expectations of students 
at the end of Secondary level.  

The seven students who justified the general conjecture found a mathematical pattern 
from particular cases obtained from the characterization used in their justifications. This 
confirms that searching for patterns is a relevant and necessary step in inductive 
reasoning process in lower University levels and this kind of work can provide students 
a way to get the generalization process in a more significant form. In this sense, if 
students do not have habits of mind needed in order to discover a mathematical 
structure from particular cases, it will be very difficult for them to work with 
mathematical structures significantly in later courses.  

Many students considered the conjecture obvious on the basis of particular cases and 
did not think a general conjecture justification necessary to validate their statements. 
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Spanish students at these levels are still not accustomed to proving their conjectures. In 
some way, students have validated their conjectures with some particular cases and 
some of them recognize the need to prove the general expression to be convinced of its 
truth. This kind of activity can be used to introduce students to justification tasks.  

We have found two main points where students have difficulties. The first point was in  
finding the pattern. Even when they organized some particular cases of the underlying 
pattern, they did not know how to obtain the pattern. They considered the linear pattern 
but did not try the quadratic function as a possible pattern, in spite of their  work with it 
in mathematics classes. The other difficult point was when they had found the pattern – 
the recurrence relation in most cases - and they did not know how to express the pattern.  

Algebraic language appeared in all cases when the students tried to express the 
generality of the pattern. So generalization activities can be considered as a way to 
introduce algebra, as Mason pointed out (Mason, 1996).  

In general, students do not feel sure with their own work and they need – even require - 
the interviewer’s intervention.  

We did not notice significant differences among students’ reasoning in the different 
courses of Secondary level. It happened in the same way with students with different 
academic results belonging to the same year. We only detected some differences in the 
way they expressed their argumentations. 
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A TOOL FOR ANALYSING PROOF  
IN A DIDACTIC PERSPECTIVE 

 
Viviane Durand-Guerrier, IUFM de Lyon & LIRDHIST, 

Université Lyon 1, France 
 
 
Abstract: In this paper, we intend to provide theoretical arguments for the 
importance of taking account in quantification matters while analysing proofs in a 
didactic perspective, not only at tertiary level, where various research are still 
available, but also at secondary level and we argue that natural deduction in 
predicate calculus is a relevant logical reference for this purpose. Following Quine, 
we emphasize on an example the interest of formalizing mathematical statements in 
Predicate Calculus in a purpose of conceptual clarification. In a second part of the 
paper, we give some short insights about the theory of quantification before exposing 
the system of Copi for natural deduction. The last section is devoted to analysing a 
proof using the logical tools offered by natural deduction in predicate calculus. 
 
I. About he importance of quantification in elementary geometry  
It is widely recognized that in tertiary mathematical education, quantification matters 
are central and source of strong difficulties, even for gifted students (Dubinsky & 
Yparaki, 2000, Selden & Selden, 1995, Epp 2004, Chellougui, 2003) ; but  it seems 
that, in secondary mathematical education, a low interest is paid on quantification 
matters. 
Concerning the French context, in most research in didactic of mathematics, the 
logical tools used to analyse proofs are referring mainly to propositional calculus. 
This is the case for Toulmin's model, used for example by Pedemonte (2003) or 
Hoyles & Küchman (2003). This is also the case for Duval's analysis (Duval, 1991, 
1995) widely used in French research about argumentation and proof. In these 
frames, the focus is on the fundamental inference Modus Ponens. Toulmin (1993) 
introduces the notion of warrant, which is a statement supporting the claim as a 
consequence of the data. Duval (1995) speaks of "Enoncé-tiers", a statement in the 
form "if p, then q", namely a theorem that is already known. Giving such a theorem, 
once it is stated that, in the considered situation, the conditions required in the 
antecedent are fulfilled, the conclusion is to be detached. In such frames, the bricks 
for analysing reasoning are clearly propositions; that means linguistic entities likely 
to be either true or false. Their main interest is their simplicity and their wide 
spectrum of application. However, as we have shown it on various examples 
(Durand-Guerrier 2003a, 2003b), there are a lot of proofs, even in elementary 
mathematics, that do not fall under this type of analysis. Indeed, quantifications 
matters are usually involved in mathematical proofs, and not all of them can be 
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absorbed in propositional calculus The ones with which no problem may arise are 
those classical proofs that require a universal conditional theorem with exactly one 
free variable: "∀x T(x) ⇒ F(x)". But of course, even in a Geometry course taught in 
middle school, you can find statements involving two or more variables and 
eventually both existential and universal quantifiers. We will now illustrate this point 
with an example. Let us consider the following statement: "for all three points that do 
not lie on the same line, there exists a unique circle on which these three points are 
lying". In order to formalise this statement, three one-place predicates:  P (to be a 
point) ; L (to be a line) ;  C (to be a circle) ; a two-place predicate : R ( to lie on ), and 
six variables x, y, z  t, u, v are required to provide the following formula :  
(1) 

! 

"x"y"zP(x)#P(y)#P(z)#¬ $t L(t)#R(x, t)#R(y, t)#R(z,t)( )( )( )% 
 

! 

"u C(u)#R(x,u)#R(y,u)#R(z,u)# $v C(v)#R(x,v)#R(t,v)#R(z,v)( )% v = u( )( )( )  
Obviously, this is generally hidden in the mathematic class. The main reason is that 
most often the figure provides the information expressed in the statement, so that it is 
no use to have in mind all the condition while solving a classical problem relying on 
a particular figure. However, if students are supposed to be able to overcome the 
figure information to deal with general statements, it is worthwhile to keep in mind 
the complexity of the formula. The syntax of formula (1) reminds us that behind our 
ordinary simple gestures in mathematics, are hidden many constraints to be taking in 
account. In this particular case, it becomes apparent when you have to reason in 
general cases : either it is necessary to control that the considered points do not lie on 
a same line, or it is necessary to distinguish the particular cases from the general 
ones. More over, the last part of the formula gives a path to proving uniqueness in 
such a case. Considering precisely the conditions lead to explicit the difference 
between a line, a general curve, and a circle, and to emphasize the fact that in 
Euclidian Geometry "to lie on the same line" for two points is a general result, while 
for three points or more it is a property that might be satisfied or not, and to continue 
with the fact that you have the same result replacing "to lie on the same line" by "to 
lie on the same circle" and "two points" by "three points". Finally, a question such as 
"what is it for four points" could arise. More generally, it emphasizes the fact that 
behind symbols, there are objects of various nature and with various properties This 
is in keeping with Quine' s point of view who claims that the formalisation in 
Predicate Calculus contribute to conceptual clarification.  
  
II. Difficulties with statements involving quantifiers  
We have given in the previous paragraph some arguments that focusing on 
quantifiers may be useful for teaching mathematics, even at secondary school. But, 
since the late seventies, after the disaster of the so called " Réforme des 
mathématiques modernes" in France, logical considerations have been thrown out of 
programs and progressively from mathematics classroom. In a French famous book 
addressed to mathematical prospective teachers, Glaeser (1973) notes that 
quantification matters and consideration about symbol's logical status overcome the 
purpose of its book, due to the subtlety of distinction between individual and variable. 
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A way to escape these questions is to work with generic elements, so that quantifiers 
and variables disappear to benefit of individuals. This is the main way we do in 
secondary mathematics class in France, following the Euclidian tradition. In this 
respect, the theoretical frame proposed by Duval (1995) to analyse proofs fit with this 
ordinary practise. However, as we have shown elsewhere, this may lead on the one 
hand to deep misunderstanding in statements, particularly those involving implication 
(Durand-Guerrier 2003a) or negation (Durand-Guerrier & Ben Kilani, 2004), and on 
the other hand to invalid proofs (Durand-Guerrier & Arsac, 2003). In the last case, it 
happens that even tertiary mathematical teachers do not recognize the logical error 
due to an incorrect handling of quantifiers. It can also occur that a well-founded 
doubt about validity appears while the proof is actually valid (Arsac & Durand-
Guerrier, 2000). Our own research corroborates results from Selden & Selden (1995) 
who claim that unpacking the logic of a mathematical statement is necessary for 
advanced mathematics, and provide empirical data showing that doing this is very 
difficult for most students. Chellougui (2004) shows clearly, on the example of the 
notion of supremum, that difficulties with quantification matters at university are 
underestimated in French textbooks and, in a Tunisian context rather similar in this 
respect with the French one, in courses provided to students. Bloch (2000) had 
already shown that difficulties with quantification matters could arise when dealing 
with the notion of upper bound. As a consequence, far from contributing to 
conceptual clarification, formalisation in predicate calculus leads to opacity for 
definitions and erratic use in proofs. Nevertheless, it appears, in semi-directive 
interviews that, as soon as there are no more quantifiers involved, students recover 
their ability to prove.  
  
III. Presentation of the natural deduction in Symbolic Logic by Copi. 
 
III.1. Some brief insights about the theory of quantification  
Although Aristotle was already deeply concerned with quantification matters, it takes 
a very long time before a sound quantification theory could be established. According 
with most authors, Frege (1879) is the first logician who established it on a secure 
foundation ; he was followed by Russel (1903) and many others who developed it all 
along the first half-twentieth century. Quine (1902-2002), the famous American 
logician and philosopher defended all along his life the importance and the relevance 
of predicate calculus system and its methods for sciences in general and mathematics 
in particular (Quine, 1950, 1987). In his widely used textbook of formal modern logic 
(Quine, 1950, fourth edition 1982), two parts apart from four are devoted to 
quantification - Part 2: General terms and quantifiers; Part 3: General theory of 
quantification -. A large treatment of proof for logical validity is provided, referring 
in particular to what he calls the main method, consisting in proof for inconsistency, 
namely reductio ad absurdum, and the dual method for direct proof for logically 
valid implication. As an introduction of the main method, he wrote : 
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" We turn now to a proof procedure that will be found to be complete: adequate to establishing the 
validity of any quantificational schema and hence also to establishing any implication1 and any 
inconsistency." (Quine, 1982, p.190) 
It is important to point this at the very beginning of the exposition because, in this 
method, a rule relying on a logically invalid quantificational schema is introduced; 
and so it is for the dual of the main method for direct proof that he presents further 
and which inherits of the completeness of the main method. The direct method is "of a 
type that is known as natural deduction and stems, in its broadest outlines, from Gentzen and 
Jaskowski (1934)" (ibid. p.244). Many versions of natural deduction can be found in the 
literature; all of them follow the same purpose: to remain as near as possible of the 
way mathematicians reason. What we learn from history is that quantification is 
much more complex than it is generally thought and that the main purpose of the 
promoters of predicate calculus is the control of validity, especially in mathematic. In 
this respect, although these methods have been elaborated for controlling validity in 
Predicate calculus itself, and opposite with other methods for validity, natural 
deduction systems provide relevant tools for controlling validity of mathematical 
proofs2.  
  
II1.2. General features of natural deduction systems  
The main interest of natural deduction in a didactic perspective lies in rules for 
elimination and introduction of both propositional connectors and quantifiers. 
Elimination for implication is the well-known inference rule called Modus Ponens. 
Introduction of implication is called by Quine "Condizionalisation" :   
"[The rule of conditionalization] consisted in showing that whenever one statement could be 
deduced from another in the concerned system, the conditional formed of the two statements could 
also be proved as a theorem by the original rules of that system"(Quine, 1982, p.244) 
It is easy to recognize here the classical way to prove a conditional statement in 
mathematics, in case both antecedent and consequent are propositions. It is related 
with the theorem of deduction established separately by Herbrand and Tarski and it 
plays a fundamental role in mathematical proofs. However, it is rather remarkable 
that the importance of this rule is generally not emphasize in didactic research about 
reasoning, the focus being preferably pointed on Modus Ponens. The same 
phenomenon is to be seen concerning the rules for elimination and introduction of 
quantifiers that are nearly never considered in mathematics classroom, even at the 
university, being replaced most often by informal reasoning rules (Durand-Guerrier 
& Arsac 2003)3. There are four rules concerning quantifiers ; two of them are relying 

                                                
1 In this textbook, Quine considers that the term "implication" must be kept for the logically valid 
conditional (for some development, see Durand-Guerrier, 2003, pp.9-10) 
2 For examples, see Arsac & Durand-Guerrier (2000); Durand-Guerrier & Arsac (2003) and 
Durand-Guerrier & Arsac to appear in Educational Studies in Mathematics. 
3 And for a reference in English, Durand-Guerrier & Arsac to appear in Educational Studies in 
Mathematics 
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on logically invalid quantificational schema so that restrictions are required to insure 
validity. The main differences in the various systems concern these restrictions. 
Quine version is very complete and brightly exposed, but it is rather technical and 
spread in several different chapters. For this reason, we prefer presenting the version 
of Copi (1954, second edition 1965) that is exposed in a more compact way, and thus 
most easy to summarise. 
 
III.3. Quantification rules in the Symbolic Logic by Copi (1954, 1965)  
Symbolic logic by Copi is a first textbook written to serve to undergraduate and 
graduate students, in which, as it is the case in Quine (1950), quantification matters 
are widely developed. We refer for our presentation to the second edition (Copi, 
1965), in which the quantification rules are presented twice. In this paper, we present 
only the preliminary version, that we will complete by some specific restrictions 
needed for preserving validity. 
The first rule of inference concerns elimination of the universal quantifier ; it is called 
Universal Instantiation (U.I.) and states that :  
" (...) any substitution instance of a propositional function can validly be inferred from the universal 
quantification. We can express this rule symbolically  
  

! 

(x)"x

#"v
 (where v is any individual symbol)" (Copi, 1982, p.50) 

This rule relies on the valid schema 

! 

(x)"(x)#"(y)  and expresses that "what is true 
for all is true for any".  
The second rule is the dual of the first one and concerns the introduction of the 
universal quantifier ; it is called Universal Generalisation (U.G.) and states that : 
"(...) the universal quantification of a proposition can validly be inferred from a substitution 
instance with respect with the symbol y. Our second expression for this quantification rule is  

  

! 

"y

#(x)"x
 (where y denotes any arbitrarily selected individual)" (ibid., p.51) 

This rule relies on the invalid schema 

! 

"(y)# (x)"(x) . For this reason, it necessitates a 
restriction; you must be sure that no assumption other than the property expressed by 
Φ has been done. Obviously, it is build "by analogy with a fairly standard mathematical 
practice"(ibid., p.50) 
The third rule concerns the introduction of the existential quantifier; it is called 
Existential Generalisation (E.G.) and states that :  
"(...) the existential quantification of a propositional function can be validly inferred from any 
substitution instance of that propositional function ; (...) Its symbolic formulation is :  

  

! 

"v

#$x"x
 (where v is any individual symbol)" (ibid., p.52) 

The fourth rule is the more delicate to use. It concerns the elimination of the 
existential quantifier and states that :  
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"(..) from the existential quantification of a propositional function we may validly infer the truth of 

its substitution instance with respect to an individual constant which has no prior occurrence in that 

context. The new rule may be written as   

  

! 

"x#x

$#v
(where v is an individual constant having no prior occurrence in the context) 

(Ibid. p. 52). 

As the second rule, this one relies on an invalid schema, namely 

! 

"x#(x)$#(y). The 
restriction is here very strong and many errors are due to forgetting it, particularly 
when, in a proof, an existential instantiation follows a universal instantiation4. We 
have shown  (Durand-Guerrier & Arsac, 2003, 2005 to appear) that this restriction is 
closely related with the dependence rule. A consequence of these restrictions is that 
you must not only have a control for each step of the proof, but also have a control on 
the global proof. In particular, it is not possible to make a universal generalisation on 
an individual introduced by an existential instantiation.  
 
 

IV. Analyse of a geometrical proof  
We come back now to the theorem introduced in the first paragraph: "For all three 
points that do not lie on the same line, there exists a unique circle on which these 
three points are lying". 
A fairly classical proof of this theorem for pupils grade eight can be written in the 
following form. 
Proof: Let A, B and C be any three points not relying on the same line. Let us 
consider Δ1 the mediator of the line segment [AB] and Δ2 the mediator of the line 
segment [AC]. As the lines (AB) and (AC) are not parallel, then the two mediators 
are secant; O denotes their intercept. As O is on the mediator of [AB], OA=OB; for 
an analogous reason, OA=OC. Conclusion, B and C are on the circle, say Γ, whose 
centre is O, and whose radius is OA. As a circle is perfectly determined by its centre 
and its radius, this circle is unique. 
 
IV.1. First analyse of the structure of the proof 
First of all, it is to notice that the first assumption is a universal instantiation of the 
antecedent of conditional that remains implicit in the given formulation of the 
theorem. Indeed, the formulation is given with a bound quantifier, that restricts the 
scope of the universal quantifier to those elements that satisfy the required property. 
But of course, it is to prove a conditional, namely: "For all three points, if they do not 
lie on the same line, then there exist a unique circle on which these three points are 
lying".  

                                                
4  See for example Bagni (2005) 
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The general structure of the theorem to prove is (1) '

! 

"x"y"z(#(x,y,z)$%(x,y,z)) '. and 
the macro structure of the proof compounds three steps :  
 
1.To apply Universal Instantiation to the given statement to get the propositional 
conditional (2) '

! 

"(a,b,c)#$(a,b,c) '.This first step remains implicit as it is generally 
the case in mathematics. The corresponding statement will be "Given three points A, 
B and C, if they do not lie on the same line, then there exists a unique circle on which 
these three points are lying". 
 
2.To prove by "conditionalization" the statement derived by universal instantiation. In 
order to do this, an auxiliary premise is introduced. It is a derivation in the proof. 
Following, for example, Hofstader (1979), we indicate its debut and its end by two 
brackets :  
 
[

! 

"(a,b,c)  
Mathematical treatment 

! 

"(a,b,c) ] 

(2)

! 

"(a,b,c)#$(a,b,c)  Introduction of implication 

The brackets indicate that the statement on the first line (the antecedent of the 
conditional to prove) is introduced as an auxiliary premise, i.e. in this context, it is 
not assumed as a true statement. As a consequence, the statement on the last line 
before the bracket (the consequent of the conditional to prove) is not a true statement 
in the context. So, according with us, writing "conclusion" before this last statement 
is not relevant. Indeed, the proof is not over! The conclusion of this step is the 
conditional statement (2) formed by the statements on the first line and the last line in 
this order. 
 
3.To apply Universal Generalisation to statement (2) in order to infer statement (1), 
that is the statement to prove. 
 
In France, in mathematics classroom, it is rather common to consider only the step 2. 
More over, in exercises, generally, only the part of the proof that we have written in 
brackets is considered, without making clear that an auxiliary premise is considered. 
As an example: (A,B,C,D) is a convex quadrilateral ; I, J, K, L are respectively the 
midpoints of its sides [AB], [BC], [CD], [DA]. Prove that (I,J,K,L) is a parallelogram. 
Once more, what is to prove is the conditional statement. May be you could think that 
the status of all these statements are obvious, but it is likely that it is not the case for 
some students. We may wonder if the nearly exclusive focus on the very core of the 
proof, where indeed the mathematical treatment is done, could be a didactical 
obstacle for an adequate appropriation of the specificity of mathematical reasoning, 
that means proving general results by mean of hypothetical-deductive method. Frege 
(1971) said that mathematicians often avoid to distinguish between proving 

! 

"#$ 
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and proving 

! 

" by Modus Ponens on 

! 

"#$ and 

! 

" , and emphasized the importance of 
this distinction. This question of determining if this practise is a possible didactic 
obstacle remains open and requires further empirical research. Some argument 
supporting this thesis is thus provided by Mathematical Induction. Mathematical 
Induction is introduced in France at grade eleven; it is typically a method of proof 
that requires clarifying both conditionalization and Universal Generalisation and it is 
well known that many students feel strong difficulties to capture the signification of 
this method. 
As it must be clear, the macrostructure that we describe in this paragraph is rather 
independent of the content of the considered statement. We considered a very general 
level of syntax, shared by most of mathematical statement, in order to focus to the 
incompleteness of the proof usually provided in class. However, as we have seen in 
the first paragraph, the deep structure of the statement is more complex. And the 
simplicity of the proof we provide is deceptive. Indeed, there are many elements 
involved in the proof that do not appear, especially those theorems which assert 
existence under conditions. To illustrate this point of view, we provide in next 
paragraph an analyse of a short excerpt of the core of the considered proof in Copi's 
system.  
 
IV.2.  Mathematical and logical features in the core of the proof.  
We consider in this paragraph a small abstract of the proof in order to examine on the 
one hand hidden existential instantiation and on the other hand how logical and 
mathematical considerations work together. At this stage of the proof, we are in the 
core of the proof in which the auxiliary premise 'AP1 :  Points A, B, C do not lie on a 
same line' has been introduced, and we consider two intermediate conclusions ;  
'C1: A, B, C are three different points', which is an immediate consequent from AP1, 
and  'C2 : There exists exactly one point lying on both mediators of [AB] and [AC] '. 
While analysing the proof with Copi's system5, it appears that it is necessary to 
express premises under the general form, which is not necessary the case in the 
standard format.  In our cases, the four following premises are required. 
 P1:  For all point M, N and P, if M and N are different, P lies on the mediator of 
[MN],if and only if PM=PN ; 
P2: For all points M, N and P, if M and N are different and if P lies on the mediator 
of [MN], then P is different from M and N ; 
P3:  For all two points M and N, if M and N are different, then there exist a unique 
circle whose centre is M and whose radius is MN ; 
P4:  For all M, N and P, if M is different from N, and if MP = MN, then P lies on the 
circle whose centre is M and whose radius is MN. 
An immediate remark is that in all these statements interplay implication, universal 
quantification and for some of them existential quantification. This is a very general 
case in Geometry, but generally, it remains implicit because most of the information 

                                                
5 We give in appendix the analyse with Copi's system of this excerpt  
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is visible on the figure and consequently only part of the statement is explicit. For 
example P3 is replaced by 'P lies on the mediator of MN if and only if PM = PN', so 
that the condition that points M and N ought to be different disappears. As every 
teacher knows, while dealing with general proof, it is very common that students 
forget particular cases or existence's conditions. Taking care of these particular cases 
and existence's conditions requires that the focus be moved from propositions to 
objects. More precisely, if the mathematical effective arguments are indeed expressed 
through propositions, it is nevertheless necessary, to apply them in a sound manner, 
to keep control about the handling of quantifiers. 
 
V. Conclusion 
 
In this paper we try to show in which respect natural deduction in predicate calculus 
provides tools for analysing proof by taking in account quantification matters. By the 
exigency of introducing every symbol used in the proof, distinguishing dummy 
variables and individual symbols, natural deduction in predicate calculus offers a 
possibility to control the validity of proof and in certain cases point out implicit that 
might lead to incorrect proof. By focusing on interplay between propositional 
connectors and quantification, it provides an extension of the classical tools used in 
didactic of mathematics to analyse proofs. According with us, this enlightens the fact 
that many things are silenced in the standard manner, especially those considerations 
concerning the existence of the objects that are introduced. We have shown that it is 
relevant for analysing proof in tertiary mathematical education. We make the 
hypothesis that it is also the case in secondary mathematical education, and we 
thought that we give in this paper some insights to open a path for further research 
considering this question. More generally, these considerations show clearly that for 
us, the logical validity is a prominent criteria for analysing proofs in a didactic 
perspective, prior from the focus on proving to convince or proving to explain6. 
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Appendix 

Analyse with Copi's system of an excerpt of the proof studied in section V. 
 
 
The first seven statements are the premises. Let us remind that AP is the auxiliary premise, antecedent of the 
conditional to prove, and that C1 and C2are intermediate conclusions, while P1, P2, P3, P4 are theorems.  
 
(1) AP.  Points A, B, C do not lie on a same line  
(2) C1. A, B, C are three different points  
(3) C2. There exists exactly one point lying on both mediators of [AB] and [AC] ' 
(4) P1.  For all point M, N and P, if M and N are different, P lies on the mediator of [MN],if and only if 
PM=PN ; 
(5) P2. For all points M, N and P, if M and N are different and if P lies on the mediator of [MN], then P is 
different from M and N ; 
(6) P3.  For all points M and N, if M and N are different, then there exist a unique circle whose centre is M 
and whose radius is MN ; 
(7) P4.  For all M, N and P, if M is different from N, and if MP = MN, then P lies on the circle whose centre 
is M and whose radius is MN. 
 
(8) O lies on both mediators of [AB] and [AC]    Existential Instantiation on (3) 
(9) O lies on the mediator of [AB]     Separation on (8) 
(10) if A and B are different, then O lies on the mediator of  [AB] if and only if OA = OB 
         Universal Instantiation on (4) 
(11) A and B are different      Separation on (2) 
(12) O lies on the mediator of [AB] if and only if OA=AB  Modus Ponens on (10) & (11) 
(13) OA=OB        Modus Ponens on (9) & (12) 
(14) O is different from  A and from  B    
    Universal instantiation followed by Modus Ponens on (9), (11) & (5), 
(15) O is different from A      Separation on (10) 
(16) There exist a unique circle whose centre is 0 and whose radius is OA.    
    Universal instantiation followed by Modus Ponens on (15) &(6) 
(17)  Γ is the circle whose centre is 0 and whose radius is OA  Existential instantiation on (11) 
 (18) B lies on the circle  Γ whose centre is 0 and whose radius is OA Modus Ponens on (11), (13) & ( 7) 
(19) C lies on the circle  Γ whose centre is o and whose radius is OA  Substitution from (9) to (18) 
(20) A lies on the circle  Γ whose centre is O and whose radius is OA Substitution in (13), (15), (18). 
(21) A, B and C are lying on circle  Γ     Conjunction on (19), (20), (21) 
(22) There exists a circle on which points A, B and C are lying  Existential generalisation 
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VISUALISING AND CONJECTURING SOLUTIONS

FOR HERON'S PROBLEM

Lourdes Figueir  as,  Universitat Autònoma de Barcelona, Spain

Jordi Deulofeu,   Universitat Autònoma de Barcelona, Spain

Abstract:    We analyze  with a practical  teaching porpouse some aspects of using visual
constructions during problem solving processes. In particular, we analyze some geometric
constructions made to conjecture the solution to Heron’s problem, and obtain two different
categories of visual representations. The paper includes explicit contributions of some par-
ticipants of group on proof at CERME IV, specially trying to make connections between
research and teacher practice.

1 Introduction

Visualization has been a main topic in mathematics education research for the last decade,
and many different theoretical perspectives and practical resources have been developed [16]
[12] [17] [8]. Especially in the field of geometry many contributions have been made,
emphasizing the connection between symbolic and visual representations of mathematical
knowledge [10], [1].

Attending the specific moment of formulating a conjecture, many investigations have
focused on the role of drawings within geometrical activity, and inquired into the intimate
relationship between drawings and concepts [14].

The main theoretical ideas that we will consider here as a framework are the following:

1. Visualization is a concept connecting both symbolic and iconic representations, which
are linked by the problem solver in a process of interaction. This view of visualization
is characterised by a continuous change between these representations [10]. In the
school context, the teachers often gives support to this change by acting as an external
mediator between iconic and symbolic thinking.

2. Among the functions attributed to visualization, we focus here on its power as a builder
of mathematical ideas, and we consider it necessary for heuristic reasoning [12], and
thus of producing conjectures. The symbiosis between concepts and geometric figures
stimulates new directions of thought, but there are logical or conceptual constraints
which control the process [7].
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3. Both, visualization and conjecturing have an important contextual component, and
any observation is made within a particular context, so that its applications in other
situations, surely vary [12], [5]. It is not our objective to produce some general
classification of conjectures, able to be applied for every problem or any situation,
but to analyze what in a very concrete setting occurs to build bridges between practice
and research. For theoretical works supporting this link between teaching and research,
see [2, 3, 13].

As we analyzed in this paper the kind of conjectures arsing from the discussion of
Heron’s problem, we pose it now, and comment briefly its solution:

Heron proofs in hisCatropticathat the light rays cover a minimal distance supposed that
incidence angle and reflection angle are equal [9]. A modern statement of the problem, more
commonly used, is the following:

Let s be a line andA andB two points at the same side ofs. For which pointP in s is
AP + PB the shortest way joiningA andB? [4]

The most usual geometrical construction used to solve the problem is the same proposed
by Heron:

Let C be the point symmetric to A with respect to the lines, so that the segmentAC is
perpendicular tos. The line joiningB andC intersectss in P , which is the point we are
looking for. (see Figure 1).

We analyzed here which kind of geometrical ideas were used to conjecture the solution
to Heron’s problem, when it was posed to future primary teachers.

A

P
s

B

C

Q

Figure 1:

2 Drawing of visual diagrams to conjecture the solution

Heron’s problem was proposed in a primary teacher training course on mathematics. It was
their first year at the university, and there were approximately fifty people in attendance.
The problem was proposed to the students, who discuss the solution in groups. Afterwards,
different approaches were discussed in the whole class.

When trying to solve the problem, five conjectures arose, some of them depending on
the refutation of others. One of the groups explained conjecture 1 in Table 1 and presented
it as a solution of the problem. Afterwards, the whole class were invited to share diverse
approaches to the problem, and other conjectures were discussed. These conjectures are
summarized in Table 1.
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Table 1: Geometric constructions to visualize a solution of Heron’s problem.

Conjecture Proof or counterexample
1. Construction suggested by
Heron. P is the intersection
betweens and the line joiningB

and the symmetric point toA with
respect to the lines

A

P
s

B

C

Q

For any other pointQ ∈ s, it must
be proved thatAQB > APB.
Since

AP = CP ,

AQ = CQ ,

AP + PB = CB , and

AQ + QB = CQ + QB ,

we deduce from the triangle
inequality for4CBQ that

AP + PB = CB

< CQ + QB = AQ + QB

2. P is the intersection betweens
and the median ofAB.

A

s
P

B

P

B

A

s

3. P is the intersection betweens
and its perpendicular through the
mid-point ofAB.

A

s
P

B

���
�

As

B

P
4. r is the perpendicular toBD

throughA; O the intersection ofr
and BE; and P the intersection
between s and its perpendicular
throughO.

A

s
P

B

Or

E D
s

A Br

E P
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Table 1: Geometric constructions to visualize a solution of Heron’s problem.

Conjecture Proof or counterexample

5. O is the intersection between
AD andBE. P is the intersection
between s and its perpendicular
throughO.

A

E P
s

B

C

O

D

This conjecture gives a correct
solution to the problem. Since

AE

OP
=

ED

PD
y

BD

OP
=

ED

EP
,

we deduce that

AE · PD = BD · EP

AE : EP = BD : PD

Thus 4AEP and 4BDP are
similar, and∠APE = ∠BPD.

All of them look for the pointP by intersecting lines drawn from the lines and the
given pointsA andB. All of the students assumed implicitly thatP must lie between the
pointsE y D obtained by intersectings and the lines perpendicular tos throughA andB,
respectively.

Attending the use of conceptual procedures in the constructions of visual diagrams to
conjecture a solution, these have been firstly classified into two categories:

C1. Constructions based on previous knowledge -conceptual, iconic
or procedural- or on the refutation of a previous conjecture.

The first three conjectures in Table 1 follow from this kind of construction. The first one
reduces the problem to the consideration of joining two points by a straight line. In this case,
the concept of minimal path is embedded in both the problem and the diagram, and those
who made this conjecture had the insight to apply their knowledge that the shortest distance
between two points is a straight line, but to do so is not trivial, as other knowledge, related
to the preservation of distance under reflection, must come into play [15].

The second one determinesP as the point of intersection between the perpendicular
bisector ofAB ands. The consideration ofP as lying on the perpendicular bisector between
A andB allows one tobalancethe distance between the two drawn segments. Students
implicitly assign to its points the property of being at the same distance to the extremes of
the segment, and this makes this conjecture a good one to solve the problem, illustrating
an interesting confusion that occurs in solving such problems: equal distances are often
confused with shortest distances.

The refutation of this conjecture, using a new construction whereP does not lie on the
segment, induces a new conjecture. This new conjecture depends on the previous one, which
affirms thatP lies onAB (Conjecture 3), and could be based on the fact that the mid point of
AB is conserved under vertical projection. This new construction permits them to minimize
one part (AP ) of the total path APB, and is, according to [14], an attempt to control the
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process of producing a more and more satisfactory drawing. But the solution is also easily
refuted by a counter example in which the horizontal distance betweenA andB is small
compared to the vertical distance between them.

The two remaining conjectures were considered independent from the later two, as they
arose in different groups after they said they have no idea how to findP .

C2. Spontaneous constructions

Constructions of this kind apparently do not follow any procedure or conceptual strategy,
except to obtain a pointP between the extremesE y D (Conjectures 4 and 5)1. They
assume that we expect from them a geometrical diagram leading to P, and produce it by
simply making lines starting from the given points, but they are not able to explain why
they are doing it so. Although both drawings in conjectures 4 and 5 are created in the
same “reckless” way, the fourth is very easy to refute with a simple counterexample; the
last conjecture, however, leads to a correct solution for the problem, and generated a long
discussion involving the whole class.

When trying to refute the last conjecture by a counter example, all new diagrams proved
useless. The students then started to check thatin all cases,the pointP and the one obtained
using Conjecture 1 are the same. But the problem is that this new diagram does not permit
them to visualize the pointP produced by conjecture 5 as a solution of the problem, and
even once its validity have been proved, the logical argument involving similar triangles is
not significative enough.

3 Didactical approach to conjecture

The analysis of the situation described above led us to four questions addressing what in our
view are important demands for research on conjecture, arising directly from the teaching
practice:

1. Conjecturing and proving

For the students working on this problem, the use of geometrical drawings to solve the
problem is easy, as opposed to giving a proof. Once they have guessed Conjecture 1
(Table 1), the conflict is not that they do not knowhow to prove it, but to understand
that theyneeda proof. The construction is considered in itself as a solution of the
problem and no symbolical proof is required. For many students, this construction
remains a proof, at least until they construct a more elaborated concept [11]. But this
is not the case when considering the fifth diagram.

The formulation of the conjecture, orempirical solution [10], needs to offer a key
for a second phase involving themeaningof a proof in order to be effective. As a
consequence, some research linking types of conjectures and proof is needed, empha-
sizing the more systematic and deductive side of mathematics, and having in mind that

1To see the counterexample in 4, consider the locus of all pointsX in the plane such thatAX+BX = AE+EB,
which is an ellipse throughE andD with focal points inA andB. The segmentED is entirely contained in that
ellipse, and thereforeAE + ED > AY + BY for any pointY in ED, different fromE andD.
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usually students, and many teachers, look at Mathematics from a more inductive and
experimental point of view. Making explicit some nexus between problems, conjectures
and proof could generate a proper way to make proof significative for the students.

2. Types and elements of conjectures

Conjecture 5 offers them no clues about its validity, as the first one did. While in
the first case the construction is enough for the students to visualize the solution of
the problem (“there is nothing to prove –said one of the students–, because the shortest
path between two points is a straight line”), this is not the case with the fifth diagram. A
priori, spontaneous constructions offer no clue to find the solution. According to [10],
even though the use of different representations is a key to progress in problem solving,
geometrical representations and their continuous use do not yield, by themselves, the
process towards the solution. This last construction instills uncertainty in the students,
as there are no elements that enable them to recognize the problem. This generally
happens with spontaneous constructions. Students should analyze their geometrical
constructions in terms of the given problem in order to be able to use them for solving
the problem. Some investigations argued that when producing a drawing, students try
to reach harmony between figural and conceptual aspects [14]. However, this does not
seem to be so in the case analysed here, as there are some spontaneous constructions
which lack this harmony.

For our practical purpose of analyzing this particular experience from the perspective
of teaching practice, the distinction between spontaneous and non-spontaneous has
been adequate and productive enough. This is not the case when we want to address
a more complete frame to conduct practical experiences involving guessing. This
point calls then for research a) characterizing types of conjectures, and b) identifying
through categories the cognitive processes involved in each type. This call addresses
the more inductive and experimental side of Mathematics, and it is specially relevant
for teaching practice, as the students should also learn about effective guessing.

3. Creating knowledge by linking conjectures

Training of visualization or the use of geometrical diagrams to conjecture the solution
of a problem should consider the analysis of spontaneous constructions, as these arose
frequently during our investigation. The act of visualising and producing new diagrams
has an important contextual reference. Here, it is the continuous creation and refutation
of conjectures which promotes the creation of new ones. It is in this sense that we are
not able to extend these conclusions to other groups and individuals.

On the one hand, the lack of conceptual knowledge prevents the students from knowing
if they are really constructing a satisfactory drawing or not. On the other, the students
also need strategies of interpreting their spontaneous constructions in terms of the
statement of the problem in order to understand the role of the drawing in the problem
solving process.

At CERME 4 in Sant Feliu, David Reid discussed the problem with us in the working
group on proof, and offered us the following possible link between Conjectures 2 to 5
in an hypothetical situation:

“The diagram created in Conjecture 2 (Table 1) in a context of reasoning suggests the
next conjecture (conjecture 3). The problem it reveals is that the point P should stay
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on the segment ED that is the projection of AB onto s. This constraint, combined with
the earlier consideration of trying to equalise distances, suggests that the midpoint of
ED, or alternately the projection of the midpoint of AB onto s, is the point P. This new
construction also accounts for the known special case. If A is on s, however, a new
counterexample is produced (counterexample to Conjecture 3). This diagram shows
clearly the correct solution in another specific case: When A is on s then the shortest
path is AB itself. The emphasis shifts to defining P is such a way that it can be seen as
a continuous transformation from this initial situation. As A moves up, P must move
to the right. The segment EB provides a mechanism to produce this motion: A is
projected horizontally onto EB to the point O and then O is projected vertically onto s
to the point P (Conjecture 4). Again a counter-example is not hard to find (see Table),
because this construction does not work in the original special case, when EA=DB.

Combining the two special cases (and the mirror image of the second) suggests Con-
jecture 5: O is the intersection between AD and BE. P is the intersection between s
and its perpendicular through O” [15].

Then, it seems plausible to think that a sequence of conjectures, each based on a single
special case –or two special cases, as in the last one– a conjecture is produced that
turns out to be correct and it provides a few clues for the proving process, although
does not produce an instant proof (as with conjecture 1). How to bring this process
of linking conjectures nearer to the students seems to be very important in order to
improve their knowledge about guessing, as well as to let the teachers know about the
importance of making explicit these plausible links. This would help to conceptualize
an otherwisespontaneousand often meaningless conjecture.

4. Problems and conjectures

Heron’s problem has been especially interesting to analyse because it requires an
approach via a geometrical construction to conjecture its solution. The problem is
also rich enough to give rise to many conjectures. When the students are able to create
and interpret properly those constructions, they are often in a good position to conjec-
ture the right solution or to downright solve the problem properly. But not all problems
have the same potential to enable the students guessing, as not all problems are equally
interesting to learn about proving.

From a very concrete perspective of an in-service teacher, an expository material
including commented examples of problems to make understandable types and elements
of conjectures would be desirable. Such a material should give them keys to evaluate
problems from this point of view, understand and re-create their practice, as well as
permit them to question research on the basis of their own practice.
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A GENETIC APPROACH TO PROOF 

Hans Niels Jahnke, Universität Duisburg-Essen, Germany 

Abstract:  The paper proposes the metaphor of a ‘Theoretical Physicist’ for 

explaining the thinking of students in proof situations and for designing a 
genetic approach to proof. In regard to students’ cognitions, a formative and 
an established phase in the (personal) development of a theory are 
distinguished. In the genetic approach to proof which is sketched in this 
paper, geometry is, during an introductory phase, treated as an empirical 
theory. 

The Metaphor of a “Theoretical Physicist” 
Quite a few students of the secondary and even tertiary levels tend to confirm 
mathematical statements by appealing to measurements or special examples. They 
consider them as sufficient argument though they already have had experiences with 
mathematical proofs and, according to their teachers, should know that the general 
validity of a mathematical statement cannot be established in this way (see for 
example Healy & Hoyles, to appear; Coe & Ruthven, 1994). Some papers report on 
students asking for additional testing of a statement by means of an example after its 
proof has been treated in the classroom and and in spite of the fact that the students 
claim to have understood it. (Fishbein, 1982, 16). Some students believe that a proof 
is valid only for the special diagram which is attached to it (Hefendehl-Hebeker, 
1995).  

In the present paper I will search for explanations of these phenomena and try to 
show that this type of thinking occurs with a certain necessity and is a consequence of 
a meaningful behaviour. In a second step some proposals will be made for dealing 
with these ideas of the students in a constructive way and for leading them step by 
step to mathematical argumentation proper. I call this a ‘genetic approach to proof’. 

Frequently, difficulties of students with proof are considered as indicating a lack of 
logical insight (see f.e. Stein, 1990). Therefore, some textbooks introduce the topic 
‘proof’ by exposing logical ideas as, for example, the difference between a statement 
and its converse and the distinction between a statement which is true for some cases 
and a generally valid one. In contrast to this, the present paper departs from the 
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hypothesis that ‘mathematical proof’ is above all a problem of epistemological 
meaning (Hanna & Jahnke 1993, 433f). The role and function of mathematical proof 
will not be explained to the students by referring exclusively to mathematics and to 
purely mathematical examples. Rather, the contribution of mathematical proof to 
human cognition in general and to human understanding of the surrounding world has 
to be exposed. Put in another way, I will consider mathematical proof not through the 
eyes of a pure mathematician but from the point of view of a theoretical physicist. 
The term ‘theoretical physicist’ is meant metaphorically and designates a person who 
develops and evaluates mathematical deductions in order to better understand the 
world in which he lives. 

Using this metaphor we bring ourselves in a position beyond the established division 
of labour which separates mathematics from other disciplines. Especially, we get a 
fruitful alienation of our view on the relation of mathematical proof and special cases. 
While in pure mathematics we believe in the general validity of a theorem established 
by a mathematical proof, the situation in physics is different. Physicists will not 
accept a conclusion of a theory derived by a mathematical argument without 
experimental verification. If a conclusion is new and important, a physicist will 
develop an experimental test of it. In this sense, the metaphor of a ‘theoretical 
physicist’ might help to analyse the thinking of a pupil who prefers empirical 
arguments. 

Proof and Measurement in Mathematics Teaching 
Students are frequently asked to measure the angles of a triangle, for example. After 
they find that their sum is always nearly equal to 180 degrees, they are told that 
measurement can establish this fact only for individual cases and that they will have 
to prove it if they really want to be sure that it is true for all triangles. This 
explanation may have been obvious at the time of Plato and Euclid, but it must seem 
unsatisfactory at a time when experiment and measurement are considered the 
foundation of scientific methodology. To avoid contradiction, the students are, of 
course, told that the triangles they draw are fundamentally different in nature from 
the triangles that play a role in geometrical theorems - the latter are ideal or 
theoretical entities, whereas the former are empirical. As valid as this distinction may 
be, teachers themselves still assume that one can be sure about the sum of the angles 
of empirical triangles, without any further reflection, after the respective theorem for 
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ideal triangles has been proved, and they cannot help conveying this conviction to 
their students. 

In physics lessons, however, the message is exactly the other way round. One would 
never seriously entertain the idea that a natural law might be established by a 
theoretical proof, and one would insist that all such laws are founded upon 
experiment and measurement. (see Hanna & Jahnke, 1996, 892 f). 

Therefore, in teaching beginners an intellectually honest way is to take side by the 
physicist and to say that the angle sum theorem is true because of empirical 
measurements. Only at a later stage, one should expose the idea of a purely 
mathematical theory separated from reality. 

In the next section we will explain the consequences of this position and the meaning 
of mathematical proof in empirical theories. 

Proof and Measurement in Physics 
Theories of physics are systems of statements/theorems whose quantitative 
consequences are expressed in natural laws. Natural laws are mathematical equations 
between measurable magnitudes, for example the law of gravity or the dependence of 
the product of pressure and volume on (absolute) temperature in ideal gases. The 
ensemble of natural laws contained in a theory can be derived from a few 
fundamental assumptions by mathematical proofs. Within a certain domain of 
tolerance the validity of the natural laws is corroborated or refuted by 
experiments/measurements. 

An isolated natural law which is not linked to other natural laws can only be 
corroborated by experiments which are directly related to it. In contrast to this, a 
natural law within a theoretical network is corroborated not only by direct 
measurements but by all the measurements of all the natural laws belonging to the 
network. Thus, a mathematical proof deriving a statement (natural law) of the theory 
does not provide absolute certainty to this statement, but it will considerably enhance 
its certainty since the corroboration does not only come from an isolated set of direct 
measurements but from all measurements related to the theory. Such a theoretical 
network of statements and measurements connected by mathematical proofs is the 
safest form of knowledge at our disposal, though this does not change its, in 
principle, preliminary character. 
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In the development of science the firmness of a theory becomes especially visible in 
such moments when a mathematical deduction allows a not obvious prediction which 
afterwards is corroborated by measurements. The ability of a theory to make such 
predictions is the most important criterion of its firmness and fruitfulness. 

Applied to our example of the angle sum theorem this means that its proof will not 
give absolute certainty to the theorem, but it will enhance its certainty since it 
connects the theorem with other geometrical theorems which can also be 
corroborated by measurements. Thus, the theorem is not only tested by measuring the 
sum of the angles of a triangle, but also by measuring corresponding angles, alternate 
angles or sums of angles in 4-, 5-, 6-gons. In a long school career the students come 
to know so many statements which are connected with the angle sum theorem and 
empirically testable that they understand why Euclidean geometry is the eldest and 
empirically best corroborated theory we have and why, for a long time, 
mathematicians and philosophers attributed absolute certainty to it. 

To fully understand the problem of justification we have to discuss a further idea 
which is especially stressed by holistic philosophies of science. They point to the fact, 
that the methods for measuring the magnitudes in a natural law suppose, as a rule, the 
validity of the theory containing this law. For example, it is not possible to measure 
the magnitudes force (F) and mass (m) appearing in Newton’s law F m a= !  without 
supposing in some way that this law is already valid (see Jahnke, 1978). Philosophers 
of science say that the observational language is ‘theory loaded’. P. Duhem 
(1908/1978) was among the first who pointed to the importance of this fact. 

As a consequence holistic philosophies of science from P. Duhem to J. D. Sneed 
(1971) claim that theories as a whole have to be corroborated or refuted. If we accept 
this claim, and I think there is no reasonable alternative to this, then we have to draw 
the conclusion that a theory has to be jugded whether it is successful. In the process 
of assessment many criteria and points of view play a role which, in part, are beyond 
the limits of explicit reflection. All in all this assessment is a matter of judgement 
and, thus, a pragmatic decision. The ultimate reason for accepting a law is not of a 
logical, but of a pragmatic nature. 

Assessing a theory as being valid or acceptable implies a statement about its future. 
Scientists express their expectation that it will be possible to derive further 
phenomena and applications from the theory at hand which will be corroborated by 

Working Group 4

CERME 4 (2005) 431



experiment. However, scientists are always conscious of the possibility that new 
phenomena might be discovered which falsify the theory in its present form and 
require to modify some laws or even to introduce new parameters. In principle, 
scientific theories are open to revision. 

I would like to call this fundamental fact the circle of justification. In regard to the 
angle sum theorem we have to conclude that a logical proof alone cannot provide 
certainty to it. A logical proof reduces a theorem only to other theorems as for 
example to the theorem about alternate angles at intercepted parallels. The latter, 
however, has no higher degree of certainty than the former. The statement “In future, 
I will consider this theorem as valid” requires an assessment of the whole situation 
independent and different of the mathematical proof. This assessment takes into 
account results of measurements, other theorems, considerations of plausibility. Such 
phases of assessment are not part of the teaching of 7th graders to whom the angle 
sum theorem is conveyed. The underlying concept of proof which is determined by a 
purely logical view excludes this type of reflection. 

A judgement about a theory as valid and successful, however, can only be made in an 
advanced and late period of its development. Consequently, we have to distinguish 
between two phases, that before and that after this judgement. We call the former the 
formative phase of a theory, the latter its established phase. In the formative phase a 
theory is considered as one among several possibilities of explaining a certain area of 
phenomena. It is not clear which the adequate basic concepts are and the theory is 
taken as hypothetical. In the established phase the theory has been judged as being 
valid and successful and is taken as the only legitimate explanation of the phenomena 
to which it is related. Scientists agree upon definitions of the basic concepts, the 
explanations of the theory are considered as safe, the theory has been transformed 
into a “system of theorems which can be derived from a few axioms”. 

The Different Functions of Proof in the Formative and Established 
Phases of a Theory 
Mathematical proofs have different functions in the formative and established phases. 
When Newton published his Philosophiae naturalis principia mathematica Kepler’s 
laws of planetary motion were well-tested empirical statements whereas Newton’s 
law of gravity was an uncertain and to a high degree contestable hypothesis. 
Newton’s proof, thus, couldn’t have the function to establish the truth of Kepler’s 
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laws. Rather, it was the other way round. The fact that Kepler’s laws could be derived 
from the law of gravity was the decisive argument in favour of the latter. To use a 
term of I. Lakatos Newton’s proof didn’t effect a flow of truth from the assumptions 
to the conclusion, but, vice versa, from the conclusion (Kepler’s ellipses) to the 
assumption (the law of gravity). In the last regard, Newton’s proof was a ‘proof’ of 
the law of gravity. 

However, the situation was even more complicated and this sharpens our stance. At 
Newton’s time astronomers were well aware that Kepler’s laws did not exactly 
describe the movements of the planets. Therefore, astronomer Cassini proposed 
certain ovals (4th degree curves) instead of ellipses as paths of the planets. Some 
astronomers followed him. In this situation Newton’s proof was a strong argument in 
favour of Kepler’s ellipses and, thus, there was also a flow of truth from the 
assumptions to the conclusion. 

However, in order to arrive at this conclusion the scientists at that time had to 
evaluate the situation as a whole. It was the fit, or, to say it more emphatically, the 
harmony between Kepler’s laws and the law of gravity which served as the decisive 
argument to accept both of them at the same time as the adequate and ‘right’ theory 
of planetary motion. In a second step the deviations of a planet from the elliptic path 
were explained as perturbations by the other planets, in order to get an empirically 
satisfactory theory. 

Therefore, in the formative phase of a theory proofs do not effect an uniquely 
directed flow of truth since there are no accepted foundations. What a proof means in 
a concrete situation is subject to a judgement which has to take into account the 
whole theoretical and empirical context. 

The Behaviour of Proof Novices 
Proof novices are considered in this paper as students in their personal formative 
phase of a geometric theory. 

Semi-formal interviews with 6 students of grade 7 which took place after a first 
introduction into geometrical proof showed some interesting results. 4 students were 
ready to consider the possibility that there are triangles with an angle sum different of 
180° degrees. Rather, the low achievers denied such a possibility (see Balacheff 
(1991) for similar experiences).  

Working Group 4

CERME 4 (2005) 433



Being asked to prove the angle sum theorem none of the interviewed students gave 
the Euclidean proof though this proof had been treated in class and was required in a 
written test a week ago. However, five students were able to reproduce the Euclidean 
proof after they had been shown the figure related to this proof. Instead of the 
Euclidean proof four students derived the angle sum theorem from the fact that an 
exterior angle of a triangle is equal to the sum of the non-adjacent interior angles.  

These findings show: the students move tentatively in a network, but the network is 
still lacking structure. They are still in the formative phase and behave accordingly. 

Another example from teaching is as follows. After a proof of the fact that the 
perpendicular bisectors of the sides of a triangle meet in one point a pupil remarked: 
“You can’t say that this is true for every triangle, there are still other triangles [pupil 
points to the drawing]”. The teacher answered: “We have only used properties valid 
in every triangle” and continued with another subject (Hefendehl-Hebeker 1995; see 
also Williams, 1979, and Balacheff, 1988, for the observation that, frequently, 
students think a proof valid only for the triangle shown in the drawing). Clearly, the 
pupil in this episode is in the formative phase of a theory. He is not sure whether 
there has not been used some hidden or not explicitly mentioned feature of a triangle 
by referring to the drawing. Also, there could be some parameters involved which are 
not known for the moment but which might influence the situation. Whether a 
drawing is special or general and whether one uses a general drawing in a special way 
is a matter of an evaluation which presupposes experience with proofs in Euclidean 
geometry, but is not part of the proof and not at all a matter of pure logic. Thus, the 
conclusion that the proof is valid for all triangles presupposes an evaluation of the 
whole situation which involves pragmatic aspects. On the other hand, the teacher is in 
the established phase of the theory and argues from his point of view. To him it is 
obvious that the parameters used in Euclidean geometry (length, angle) determine the 
situation completely, and he has a sense, built up by experience, which aspects of a 
figure are general and which are not. However, his inability to realise that he is 
arguing from a point of view completely different to that of his pupil causes a serious 
problem of teaching and of understanding the nature of proof in general. 

The Genetic Approach 
The point of departure for introducing pupils to mathematical argumentation is the 
question ‘why’. A regularity or pattern is observed and the question arises what 
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makes things the way they are. Answering such questions can be considered like 
performing a thought experiment. The basis of argumentation and the chain of 
conclusions have to be developed simultaneously. Such activities can already occur at 
the elementary level (for examples see Wittmann & Müller, 1990) 

After such a ‘culture of why questions’ has been developed over several years of 
mathematics teaching there will come a time when proof is explicitly taught and the 
term ‘proof’ explicitly mentioned to the students. In Germany, this is usually the case 
in grade 7 in the course of geometry teaching. One of the first proofs is that of the 
angle sum theorem for triangles. 

Usually the theorem is proved in the classical Euclidean way and reduced to the 
alternate angle theorem. The latter is ‘proved’ by means of transformation geometry. 
Mathematically, this is not terribly honest since the axiom of parallelism is tacitly 
used and not mentioned to the students. Obviously, the intention of text book authors 
and teachers is to convey to the students the idea that proof leads to absolute certainty 
in contrast to measurements which are not precise and valid only for single cases. 

In contrast to this, I would suggest that –at this stage!- geometry is presented as an 
empirical theory. Then the meaning of proof is not to replace measurement by 
something more certain, but to relate measurements and proofs in a theory. Proofs 
help to measure in an intelligent way (Winter, 1983; Jahnke, 1978). 

To give an example I would propose to present the alternate angle theorem neither as 
a theorem proven nor as an evident truth but as an uncertain empirical hypothesis. 
Doing this we introduce the idea of modelling and the possibility of non-Euclidean 
geometries into teaching in a way adequate to pupils of the 7th grade. Consider the 
following work-sheet. 
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The straight line h rotates counter-clockwise around vertex P. 
For some positions of h measure the angles β, γ and δ. Tabulate 
and write down your observations. 

 

Students will observe: (1) Q travels more and more to the right. (2) γ increases, β 
decreases. (3) Losses of β  are exactly compensated by gains of γ. (4) There is at least 
one position of h with δ = 77°. (5) In this position h and g will not intersect. (6) To 
this position corresponds that Q has travelled to the infinite and that β = 0°. 

It is plausible that the losses of β  are exactly compensated by gains of γ also in the 
infinite (there shouldn’t be a jump). But we cannot know this and we cannot test this 
directly. But we can prove: if exact compensation takes place then the angle sum of a 
triangle is exactly 180°. 

To this idealised chain of observations and arguments the teacher could add the 
remarks that Euclid wasn’t sure about exact compensation in the infinite and 
therefore added this statement as a hypothesis to geometry and that Gauss tried to test 
this hypothesis by measuring angles in very large triangles. 

Having reached this starting point further theorems involving angles in triangles and 
general polygons might be proved and empirically tested. Theorems which are 
proved before any measurement has been done are like predictions in physics. In this 
way students come to study a ‘small theory’, and they get an idea of what a theory is, 
how measurements and proofs are related and why it is better to have a theory than 
not to have one. 

In subsequent teaching further small empirical theories should be developed as it is 
done in the project “Arguments from physics in mathematical proofs” (see Hanna & 
Jahnke 2002) where for example axioms from static are the starting point for a 
theory. 

In a final phase theories are constructed for their own sake. These theories are no 
longer considered to be empirical theories. 
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PUPILS’ AWARENESS OF STRUCTURE ON TWO 
NUMBER/ALGEBRA QUESTIONS 

Dietmar Küchemann, University of London, United Kingdom  

Celia Hoyle  s, University of London, United Kingdom 

Abstract:  A large sample of high attaining pupils were given a written proof test in Yr 
(age 13.5 years) and similar tests in Yrs 9 and 10. We look at their responses to two 
number/algebra questions which were designed to assess whether pupils used 
empirical or structural reasoning. We found that the use of structural reasoning 
increased over the years, albeit at a modest rate, but that the use of empirical 
reasoning, in the form of inappropriate number pattern spotting or through the desire 
to perform rather than analyse a calculation, was still widespread. However, we also 
identified a more advanced use of empirical reasoning, namely to check the validity 
of a structural argument. 
The analysis presented here forms part of The Longitudinal Proof Project (Hoyles 
and Küchemann: http://www.ioe.ac.uk/proof), which looked at pupils’ mathematical 
reasoning over time. Data were collected through annual surveying of high-attaining 
pupils from randomly selected schools within nine geographically diverse English 
regions. Pupils were given a written proof test at the end of Yr 8 (age 13.5 years) and 
given similar tests at the end of Yrs 9 and 10. Overall, 1512 pupils from 54 schools 
took all three tests. The tests comprised items in number/algebra and in geometry, 
some in open response format and some multiple choice. We discuss here two open 
response questions in number/algebra, A1 and A4. 
There is a considerable body of research to suggest that school pupils tend to argue at 
an empirical level rather than on the basis of mathematical structure (Bell, 1976; 
Balacheff, 1988; Coe and Ruthven, 1994; Bills and Rowland, 1999). Of course, 
inductive reasoning can be important and fruitful in mathematics (Polya, 1954) but, 
in the UK at least, the emphasis on generating data and looking for number patterns, 
even at the upper end of secondary school, has often seemed to be at the detriment of 
looking for structure.  
Item A1 involves a pattern of white tiles and grey tiles and was devised to see 
whether pupils could make a ‘far generalisation’ (Stacey, 1989) on the basis of the 
pattern’s structure or whether they would resort to a ‘function’ strategy or ‘whole-
object scaling’ (ibid) based on spurious number patterns. Brown et al (2002), in their 
work with student teachers, found that the students quite often chose to “perform 
computations when reasoning about computations would suffice”. Question A4 
explores this tendency. It is based on a suggestion made by Ruthven (1995) and 
concerns divisibility, but where the dividend is too large for computation to be a 
viable strategy. 
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Pupils' responses to A1: changes in number pattern spotting from Yr 8 to Yr 10 
Item A1 (which was familiar to English pupils) was asked in Yrs 8 and 10 (a different 
but parallel item was used in Yr 9). It is a standard number/algebra item involving a 
tile pattern, and was designed to test whether pupils could discern and describe a 
structure (assessed by carrying out and explaining a numerical calculation).  
The Yr 8 version is shown in Fig. 1. 
We had deliberately built numerical 
distractors into the item, in the form 
of simple, but irrelevant, 
relationships between the numbers 
of white tiles mentioned in the item 
(namely, 6 × 10 = 60) and between 
the number of white and grey tiles in 
the given configuration (6 × 3 = 18). 
Responses to question A1 were 
coded into 5 broad categories, or 
codes:  Figure 1: Item A1 (Yr 8 version) 

Code 1: Spotting number patterns, no structure;  
Code 2: Some recognition of structure (incomplete or draws & counts);  
Code 3: Recognition and use of structure: specific (correct answer, eg showing 60+60+3+3);  
Code 4: Recognition and use of structure: general (correct answer and general rule, eg ×2, +6)  
Code 5: Recognition and use of structure: general, with use of variables (correct answer and 

general rule, with naming of variables in words or letters).  
Analysis of the code frequencies revealed that a substantial minority of pupils had 
fallen for our distractors, in that they had used inappropriate ‘number pattern 
spotting’ strategies (code 1), such as ‘There are 10 times as many white tiles so there 
will be 10 times as many grey tiles’ (scaling approach), or ‘There are 3 times as many 
grey tiles as white tiles’ (function approach). The scaling approach was far more 
popular than the function approach, but both give the result 180 (10 × 18 or 3 × 60), 
and altogether 35% of the total sample gave such responses in Yr 8. This fell to 21% 
in Yr 9 but stayed at 21% in Yr 10.  
Complementing the changes in frequency of pattern spotting responses, the frequency 
of correct responses (codes 3, 4 and 5) went up from 47% in Yr 8 to 68% in Yr 9 but 
only to 70% in Yr 10. However, this small increase from Yr 9 to Yr 10 masks a 
substantial rise in the use of variables (expressed in words or with letters) in pupils’ 
explanations (code 5 responses), from 16% in Yr 9 to 26% in Yr 10 (starting from 
just 9% in Yr 8). 
Longitudinal data showed that the improvement in pupils’ responses from Yr 8 to 10 
was far from smooth. Regarding the number pattern spotting responses in particular, 
while only about half of the pupils who gave such a response in Yr 8 or Yr 9, did so 
again the following year, we also found that of those who gave such a response in Yr 
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9 or Yr 10, about half had not done so the previous year, ie their responses had 
‘regressed’. This suggests, that for some pupils at least, there is an element of chance 
about their responses: rather than being wedded to a particular way of construing 
such tile patterns (with some going for the underlying structure and some for a 
superficial number pattern) they seemed to hit upon one way on one occasion and 
another way on another occasion. An examination of individual scripts also shows 
that some pupils flipped between approaches on a given occasion. On the other hand, 
while 80% of those who gave a correct structural response in Yr 8 (codes 3, 4 or 5) 
also did so in Yr 10, only 54% of those giving a pattern spotting response in Yr 8 
gave a correct structural response in Yr 10. 
The use of algebra 
The Yr 9 and 10 versions of question A1 had an added part, A1b, where students are 
asked to express the relationship between the numbers of tiles in algebra. It was 
worded as follows: 
A1b: Write an expression for the number of grey tiles needed to surround a row of n white tiles. 

 We were interested in whether students were able to express any relationship they 
discerned in the tiling pattern in algebra, and indeed whether this was consistent with 
explanations of structure given in words or numbers. We have noted in a previous 
study (Healy & Hoyles, 2000) that Yr 10 students rarely used algebra as a language 
with which to described mathematical structure, even though they accorded high 
status to algebraic ‘proofs’. 
A1b asks pupils to map the number of white tiles onto grey, ie it requires a function 
approach (n → 2n + 6). Thus we were curious to see whether this would force a 
rethink on pupils who had used a scaling number pattern approach (18 grey tiles ×10 
= 180 grey tiles). In the event, this turned out to be the case for over half these pupils. 
Thus for example, of the 197 pupils who gave a scaling number pattern response to 
A1 in Yr 10, 43% gave the response ‘3n’ (or equivalent) to A1b, ie they switched to a 
function response which still fitted their (incorrect) answer of 180 but no longer fitted 
the method they had used to obtain it. A further 13% of these pupils gave the correct 
response of ‘2n + 6’ (or equivalent) to A1b, ie abandoned their pattern spotting 
approach entirely. On the other hand, and not surprisingly, few of the 110 pupils 
giving a function number pattern response to A1 switched for A1b: 87% gave the 
response ‘3n’, which fits their pattern spotting answer and approach, with only 1% 
switching to a correct response. Interestingly too, 93% of those who had given a 
correct, but specific and non-algebraic response (code 3) to A1 in Y10 (which is all 
that the item requires), gave a correct algebraic response to A1b. We found similar 
response patterns in Yr 9. 
As part of our research, we undertook case studies of some of the project schools (in 
fact those schools that had performed particularly well in the proof tests), which 
enabled us to interview some individual pupils after they had completed some or all 
of the tests, so we could ask them to reflect on the way they had answered in different 
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years. We consider here three such pupils, MS, EC and JG, each of whom had given 
a number pattern spotting response to A1 in Yr 8 and/or Yr 10 (and sometimes also in 
Yr 9). 
Pattern spotters 
MS gave a pattern spotting response in Yr 8 and Yr 10 (and also in Yr 9); however in 
Y8 he used the ‘×10’ strategy while in Yr 10 he used ‘×3’ (his Yr 10 response to 
A1b, ‘3n’, was consistent with this). He was interviewed a few days after taking the 
Yr 10 test so had little difficulty remembering his Yr 10 response:  

MS: ...there’s 6 there and 18…altogether times it by 3, then I thought it would be the same if you wanted 
to find out how many grey tiles would be in 60 so I timesed by 3… 

He also seemed to have little difficulty in ‘making sense’ again of his Yr 8 response 
but seemed unperturbed by the fact that it was different (albeit leading to the same 
answer 180). His approach seems to have been fairly spontaneous and unreflective in 
both years.  
It so happened we had also interviewed MS a year previously, a day after he had 
taken the Yr 9 Test. In this extract the interviewer asks him about his Yr 8 strategy of 
multiplying by 10, and again, there is no sign of any doubt in the validity of the 
method used: 

I:  Ok, and what makes you feel that that’s the right way to do it?   
MS: Because I found it the easiest way to get to 60 white tiles.   
I: It’s a nice quick way to get from 6 to 60 but, umm, how do you know it’s the right way to get from 6 

to 60 ? 
MS: I just know, the sum of 6 times 10 is 60. 

Pupil EC gave a ‘× 10’ pattern spotting response in Yr 8 (and Yr 9) but gave a correct 
answer in Yr 10 based on the geometric structure. He was interviewed about a week 
after taking the Yr 10 test and asked to compare his Yr 8 and 10 responses.  

I: Which one do you think is the right one? 
EC: I think this one is. 
I: The Year 8 one. 
EC: Yeah, kind of the first instinct I had. 
I: You go by instinct. 
EC: Yeah, I think, sort of, in the majority of the time the first instinct is right, so, I think maybe that one 

looks right. 

EC is then asked to explain his Yr 10 response in more detail, which he seems able to 
do quite well. However, this is not enough to change his mind about the relative 
merits of his Yr 8 and 10 responses: 

I: ...  So, you ended up here in Year 10 with this double thing and then add six. 
EC: Yeah. 
I: So, how did that come to you, I mean, why would you have done that? 
EC: I think, because we needed 60 and there was six along each row, each of the white things, so that 

means 12, so I just thought that doubling it, and then there’s three left over, so I just, plussed three 
on one, so, I'm not really sure. 

I: Okay.  I mean, that sounds sensible enough, so, the trouble is, we’ve still got these two different 
answers.  So are you going to stick with your instinct, your Year 8 instinct? 
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EC: I think so, yes. 
Now, it is just possible that EC’s statement above that “I just thought that doubling 
it”, is evidence of an empirical generalisation (of the fact that 12 is double 6), rather 
than of genuine insight into the structure of the tile pattern; also he seems to have 
difficulty keeping track of all the structural elements, in that he mentions one “three 
left over” but not the other. Nonetheless, having demonstrated that he can make some 
use of the geometric structure to find the correct number of tiles and that he can 
describe crucial features of the structure to the interviewer, it seems surprising that he 
was so ready to abandon this potentially insightful approach for the sake of 
simplicity. Perhaps at this stage, through a lack of experience or guidance, EC does 
not have the meta knowledge needed to classify his different responses in an 
appropriate way and to recognise their positive or negative qualities. This is partly 
borne out by his responses to A1b, which are correct in Yr 9 and Yr 10, even though 
in Yr 9 he gave a scaling (‘× 10’) pattern spotting response to the first part of A1. 
JG had a similar set of responses to EC, in that she gave a ‘× 10’ number pattern 
response in Yr 8 and a structural response in Yr 10 (“60 times 2 is 120, 3 times 2 is 6, 
120 plus 6 is 126”). She was interviewed about a week after taking the Yr 10 test. At 
first she could make no sense of her Yr 8 response (“I have no idea why I wrote that 
in Yr 8”), though she comes up with an interpretation eventually: 

I: I mean, say someone else had done it, not you…could you sort of try and figure out why on earth 
they did it? 

JG: (Long pause) No. 
I: No, you can’t see any logic in it? 
JG: Well…yeah.  I can now.  It's because there’s 6 there so, I figured 6 times 10 would be the 60 that 

they were talking about in the question, and so I just had to times the amount around the outside by 
the same number. Oh yeah. 

However, unlike EC, she prefers her structural Yr 10 response which to her makes 
more sense: 

I: Can you say a bit more why it makes more sense? 
JG: I don’t know…just a couple more years’ practice of finding patterns and stuff.   
I: So how does this answer sort of fit the pattern, the Year 10 answer fit the pattern better? 
JG: Well because, I didn’t just times the ones round the outside…by the same number as the ones on the 

inside…I worked out sort of a rule for it, rather than just a rule for that, that number. 
I: Right.  How did you get the rule for the Year 10 answer? 
JG: Well, the three at each end won't change, it's a single row of tiles say…you just use the top…the 

grey tiles above and below the white… 
I: Right, okay… 

Her answers here are interesting. First she justifies her preference for the structural 
response with an external reason (“more years’ practice”), which has nothing to do 
with the quality of the actual response and which is certainly no more valid than EC’s 
quest for simplicity. However, she is able to describe the structure itself very nicely 
(“three at each end... ...grey tiles above and below...”) and she does in fact say 
something, albeit in a rather cryptic way, about the quality of this explanation, 
namely about it being general: thus she found “sort of a rule” in contrast to “just a 
rule for that ... number”. Notice also the statement about multiplying “the ones round 
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the outside”, which potentially provides a test for this number pattern spotting 
strategy, since the outcome would be a set of grey tiles that no longer fits snugly 
around the white tiles. Further, she gives correct responses to A1b (in Yr 9 and Yr 
10) which shows she is able to express the structure using algebra. All in all, we seem 
here to be witnessing the beginnings of a meta knowledge about structural 
explanations, even though the concepts and/or language may not yet be well-formed. 
We do not know how representative these few interviewees are, but their responses 
do suggest that, for some pupils at least, the simplicity of number pattern responses 
may have a stronger appeal than the insight that might be gained from taking a 
structural approach. It also points to possible discontinuities between modeling with 
numbers, narrative descriptions of these models and modeling with algebra. JG did 
have insight derived from a structural approach, though her attempts to describe the 
characteristics of her response were still quite limited. This is a phenomenon we have 
found elsewhere and which may well be widespread even amongst the highest of our 
high attaining pupils, since they will generally have had little experience of producing 
mathematical explanations and reflecting upon them. 
Pupils’ responses to A4: the tendency to calculate 
We found a strong tendency for students to work at an empirical level on all our test 
items. In the case of A1, this was manifested by the pattern spotting responses 
discussed above, and by (the small number of) students who generated further data 
(e.g. for 7, 8 and 9 white tiles) and who used this to induce a rule. The same tendency 
was very strong in responses to question A4 (shown abbreviated in Fig. 2, below). 
The question was used in 
Yrs 8 and 9 (but not in Yr 
10).  In part a students 
are asked about the 
divisibility of 5! by 3 and 
in part c about the 
divisibility of 100! by 31 
(or 50! by 19). 

 Figure 2: Yr 8 and Yr 9 versions of question A4 

Most students could correctly determine the divisibility of 5! by 3 (76% in Yr 8, 83% 
in Yr 9), but the overwhelming majority did so by evaluating 5! and by performing 
the calculation 120 ÷ 3, with only 2% of the sample in Yr 8 and only 6% in Yr 9 
basing their argument on the notion that 3 is a given factor of 5!. Students were not 
allowed calculators, so that the latter kind of argument was essential to answer part c) 
correctly, and in the event 3% of the sample did so in Yr 8, and 9% in Yr 9. Most 
students wanted to evaluate the factorial, and had no viable alternative strategy. Some 
students wrote statements like “That would take years to work out and if there is 
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some short cut I don’t know it”. Some evaluated 100! as being 2400, on the basis that 
100 = 20 × 5 so 100! = 20 × 5!, and so answered ‘No’; others answered ‘No’ because 
100! is even and 31 is odd or a prime.  
We initially interpreted our interviews as suggesting that students needed to calculate 
and were insecure about using number relationships even when they apparently 
understood them. This would perhaps helps explain the seemingly astonishing fact 
that nearly half (26 of 55) of the students who did answer part c successfully in Yr 8 
‘regressed’ in Yr 9. However, we have modified our views on this: Jahnke (2005) 
uses the metaphor of ‘theoretical physicist’ to describe pupils’ behaviour as they 
learn to engage in mathematical proof. From this perspective, pupils’ recourse to 
empirical evidence can be seen as a perfectly rational attempt to test the validity of a 
proof argument, rather than as a rejection or lack of appreciation of such arguments. 
We illustrate this propensity to calculate on A4, by looking at our interviews with two 
students, MH and AM. From their written responses (summarised in Table 1, below) 
it appears that both students made considerable progress from Yr 8 to Yr 9, and both 
would seem to have a clear understanding of the ‘divisibility principle’ by Yr 9, as 
evidenced by the responses to part c. However, our interviews with them, which took 
place the day after they had taken the Yr 9 test, suggest their understanding is not 
quite so secure. 
Yr 8 Yr 9 
Pupil MH A4a: “Yes”;  
calculates 120 ÷ 3 

Pupil MH A4a: “Yes”;  
calculates 120 ÷ 3 

Pupil MH A4c: Attempts various calculations, 
eg of 10!, but gives up. Answers “No” 

Pupil MH A4c: “Yes. If you times it by a 
certain number you will be able to divide by it” 

Pupil AM A4a: “Yes”;  
calculates  120 ÷ 3 

Pupil AM A4a: “Yes. The number has been 
multiplied by 3, so it must be divisible by 3”  

Pupil AM A4c: Leaves blank Pupil AM A4c: “Yes. The number has been 
multiplied by 19, so it must be divisible by 19” 

Table 4: Pupil MH’s and AM’s responses to A4a and A4c in Yr 8 and Yr 9 

In our interview with MH, he is first asked to say a bit more about his Yr 9 
explanation to A4c. He replies with this rather nice way of describing the inverse 
relationship between multiplying and dividing by 19: 

MH: Well if you times in from 50 down to 1 you times it by 19 somewhere, so if you want to divide it by 
19 you’d just get the same answer as if not timesing it by 19 and just leaving it out altogether. 

The interviewer then asks MH about the fact that he had changed his Yr 9 answer to 
part c) from No to Yes: 

I: How did it hit you because interestingly you put ‘no’ first and then changed it to ‘yes’.  Was that a 
quick change, did you quickly see it or did you sit there and think? 

MH: Sitting there and think about it ’cos then I figured out that it was divisible by 19 if you can times it 
by 19, so I changed it. 

I: Did you, did it help, did you look back at part a ? 
MH: Yes. 
I: You did? 
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MH: Yes, I noticed that part a, everything you times in by it you can divide by, can be divided by 5, 4, 3, 
2 and 1.  

I: Now when you say you noticed that, is that because you know your tables well enough to know that 
5 goes into 120 and four goes into it, or did you do it in your head and actually worked it out? 

MH: In my head and worked it out. 
I: You did, well did you work out every one? 
MH: Yes. 
I: What, you divided 120 by all these numbers? 
MH: Yes. 
I: Really, that’s quite a lot, a lot to do.  So do you think, are you then arguing that because it works for 

5 you reckon it ought to work for 50 - 
MH: - Yeh, it should do. 
I: So your feeling is that all the numbers you multiply by you can divide by.  Is that simply because it 

happens to work here, or is there some deeper reason for it, is it kind of...? 
MH: I just feel that it works, and you know that it works in the first five, and when you get higher and 

higher and you times by any of the numbers that you can divide it by, and say in the 50-exclamation-
mark you can divide something like 99, you’re not going to be sure it can work or not, ’cept if you 
use calculator, which we wasn’t allowed to. 

This sequence, and especially the last sentence, might suggest that MH’s awareness 
and acceptance of the inverse relationship between multiplication and division, is not 
entirely secure, and is based on an empirical generalisation (of the divisibility of 5! 
by 5, 4, 3, 2 and 1) rather than on genuine insight. However this is a harsh 
interpretation since to determine that, say, 50! is divisible by 19 one also needs to 
realise that the terms following ×19 in 50! (ie ×18, ×17, etc) do not affect the 
divisiblity. 
AM’s set of written responses is similar to that of MH, except that in Yr 9 he gives an 
explanation based on divisibility in part a) as well as part c), rather than one based on 
evaluating 5!. Thus, in part a) he had written “The number has been multiplied by 3, 
so it must be divisible by 3”. In the interview, he is asked how he arrived at this 
explanation: 

AM: I think I was just thinking about it.  I was thinking 5! would be 5 × 4 × 3 × 2 ×1 so if it’s been 
timesed by three you can almost certainly divide it by 3 and I was just thinking sort of that was that.  
Also I was saying because it’s only then been timesed by 2 and by 1, because 1’s obviously not 
going to change and 2’s just going to double it.  So you’re just going to be able to divide it by 3. 

This is interesting on several counts. First, though AM does not talk of calculating 5! 
his explanation is still very much grounded in the steps of the potential calculation. It 
is not enough that × 3 is one element in a string of factors, he carefully checks that 
the subsequent factors, × 2 and × 1, won’t affect the divisibility by 3. This also nicely 
illustrates the fact that a notion like ‘divisibility’ involves a whole nexus of ideas (see 
Brown et al, 2002), including some understanding of the associative and commutative 
properties of multiplication. Last, AM says he is “almost certain” but not entirely that 
5! is divisible by 3. The interviewer explores this further: 

I: You said just now it’s almost certainly divisible by 3, you’re hesitating slightly. 
AM: I think it is divisible by 3, I think at the time I wasn’t completely certain. 
I: What yesterday, but you’re certain today? 
AM: Yes, after all that I'm almost certain that’s good. 
I: Why is there still this edge of doubt?  You say almost certain.   
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AM: Don’t know. The thing is, I am certain, but not quite... I can’t see why, I can see slightly why it 
works but not entirely, I haven’t thought ‘suppose you had a bigger number, would it…’ 

I: You have with part c made the same conclusion because you said the number’s been multiplied by 
19 so it must be divisible by 19, you’ve got the word ‘must’ interestingly, not ‘it might be’, ‘almost 
certainly will’, so you do seem to think that a bigger number would work. So say we had a thousand 
factorial and we wanted to know whether 128 went into it? 

AM: Yeh, it would be divisible by 128... as far as I know (laughs), but it’s very hard to be certain. 
Thus it would seem that for AM and for MH too, their lack of certainty about the 
‘divisibility principle’ (the argument that if you multiply by a certain number the 
result is divisible by that number) is not because they do not understand the basic 
argument or appreciate its power, but because of some awareness that other features 
of the situation (eg that in 100!, the term × 31 is followed by a long string of other 
terms) may render the principle invalid.  
Conclusion 
The propensity to calculate occurred on many of our items. For example, in Yr 10 we 
asked pupils to prove the statement that “When you add any 2 odd numbers, your 
answer is always even”. The most common approach was a purely empirical one 
(given by 31% of the sample), whereby pupils simply demonstrated that the statement 
was true for one of more pair of odd numbers. This was followed in popularity by an 
exhaustive approach (19% of the sample) concerned with the units digits of odd an 
even numbers. This can lead to a valid proof but is still essentially empirical in that it 
is concerned with surface features of odd and even numbers rather than underlying 
structure. On the other hand, a substantial minority did attempt proofs containing 
some element of structure, expressed in narrative (18%) visual (6%) or algebraic 
(5%) form. 
The propensity occurred on many of our items. For example, in Yr 10 we asked 
pupils to prove the statement that “When you add any 2 odd numbers, your answer is 
always even”. The most common approach was a purely empirical one (given by 
31% of the sample), whereby pupils simply demonstrated that the statement was true 
for one of more pair of odd numbers. This was followed in popularity by an 
exhaustive approach (19% of the sample) concerned with the units digits of odd an 
even numbers. This can lead to a valid proof but is still essentially empirical in that it 
is concerned with surface features of odd and even numbers rather than underlying 
structure. On the other hand, a substantial minority did attempt proofs containing 
some element of structure, expressed in narrative (18%) visual (6%) or algebraic 
(5%) form. 
The tendency to adopt an empirical approach is very strong in English schools and 
beyond, which might at least partly be explained by particular classroom approaches 
(see for example Morgan, 1997). Our view is that the situation does not have to be 
like this – we can change pupils’ habits of mind (Cuoco et al, 1996). Our findings 
lends some support to this, since our pupils did make some, albeit modest, progress in 
the use of structural reasoning, and the data suggest that switching strategies (even 
between incorrect strategies) might be helpful in catalyzing a new perspective on a 
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problem. In our current work (Proof Materials Project) we are working with teachers 
to see whether this change of habit can be put into effect more widely, in particular 
by making pupils more aware of different kinds of proof strategies and explanations. 
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Abstract:  We have investigated proof in two sets of commonly used Swedish upper 
secondary school mathematics textbooks. The frequency of proof items is low in 
each mathematical topic, even in the domain of geometry where pupils 
traditionally have learned proof. We explore the proof items with respect to 
different aspects of proof and discuss how they relate to students’ access to 
proof. We show with some examples how proof often exists invisible in the 
textbooks and discuss the difficulty of giving a correct definition of proof at 
upper secondary school level.  
1. Introduction 
The role of proof in the Swedish schools has diminished during the last twenty 
years, a development, which is similar to that of many other countries (Hanna, 
1995; Waring, 2001). 
The Swedish curriculum for upper secondary school does not clearly state the 
aims of introducing the students to proofs and proving activities. Only the main 
goals are stated. “The school in its teaching of mathematics should aim to ensure 
that pupils develop their ability to follow and reason mathematically, as well as 
present their thought orally and in writing.” (Skolverket, 2002, p. 60) Local 
schools and teachers have the possibility of applying these goals in their own 
way. However, one of the Criteria for ‘Pass’ (lowest mark of a three-level 
grading scale: Pass, Pass with distinction, Pass with special distinction) for any 
of the five courses A-E, into which upper secondary school mathematics is 
divided, is that “pupils differentiate between guesses and assumptions from 
given facts, as well as deductions and proof” (pp. 60-66). Furthermore, one of 
the ‘Criteria for Pass with special distinction’ is that “pupils participate in 
mathematical discussions and provide mathematical proof, both orally and in 
writing” (pp. 60-66) 
Most of the university entrants, who responded to the survey conducted by 
Nordström (2002), stated that they had had little experience about proofs in 
upper secondary school, especially in form of own practice. The aim of this 
textbook study is to complement the survey in order to create a more varied 
picture of students’ school background concerning their experiences about 
proof.  
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Researchers have paid relatively little attention to the role of the textbooks in the 
teaching and learning of proof (Hanna and de Bruyn, 1999). “In particular, there 
has been almost no examination of the actual occurrence in mathematics 
textbooks of proofs, discussions of proof, and exercises requiring the 
construction of proofs.” (p. 180) Many studies show that textbooks and teacher 
guides influence the teaching practices and the choices of the contents being 
treated in the lessons. This is particularly true for mathematics (Englund, 1999).  
The first impression when skimming through some Swedish upper secondary 
school textbooks is that the frequency of proofs and proving tasks is minimal. 
However, we wanted to systematically explore the occurrences of proofs and 
proving tasks in different mathematical domains. Our aim was also to analyse 
the nature and level of the proofs included in the textbooks and the manner in 
which the proofs were presented to the reader. The main question is how the 
textbooks enhance the students’ access to proof and in what way the textbooks 
help students to develop their understanding of different aspects of proof.  
2. Theoretical frame 
Our approach to the issue is socio-cultural. According to the socio-cultural 
theory, learning is an aspect of interrelated historical, cultural, institutional and 
communicative process (Renshaw, 2002) 
2.1. Proof as an artefact 
The notion of transparency of artefacts as Lave and Wenger (1991) define it is 
central for the study. We consider proof, in a very similar way as Adler (1999) 
considers talk when studying multilingual mathematics classrooms, as a 
resource for mathematical learning. Then proof needs to be both seen (be 
visible) and to be used and seen through (be invisible) to provide access to 
mathematical learning. We argue that Lave and Wenger’s concept of 
transparency captures this dual function of proof as a learning resource in 
mathematics. 
“…the notion of transparency, taken very broadly, is a way of organising 
activities that makes their meaning visible,…” (Lave & Wenger, 1991, 102).  
Access to artefacts in the community both through their use and through 
understanding their significance is crucial.  We study how different aspects of 
proof are visible/invisible in the textbooks.  
2.2. Conceptual frame 
We use the conceptual frame created by Nordström (2004) in the analysis of the 
data. The aspects in the frame are Inductive/ Deductive approaches, 
Conviction/Explanation, Formality, level of rigour and the language, and 
Aesthetics. We explore if the different aspects of proof are visible in the 
textbooks and discuss how they relate to students’ access to proof. For an 
account of these aspects see Nordström (2004). 
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2.3. A review of relevant research  
We found only two studies dealing explicitly with proof in textbooks. Hanna 
and de Bruyn (1999) investigate the frequency of proof items in year 12 
(aged17-18) advanced- level mathematics in Ontario. They found that only in 
the topic of geometry, textbooks do a reasonable job of providing opportunities 
to learn proof and a range of proof types was presented. No visual proofs, 
heuristic arguments or the presentation of correctly or partially completed proofs 
were used for critique by the student.  
Grenier (2000) studies the status and role of proof in 11-16 years pupils’ 
curricula and schoolbooks in France. She finds a discrepancy between the 
curriculum goals and the contents in the textbooks. She remarks that even if the 
curriculum gives possibilities to employ new ways of treating proof, the proof 
practice seems to live primarily in the field of geometry and under two forms: 1) 
Simple deductive reasoning (with a small number of steps), based on the use of 
statements or theorems from the theoretical part of the course. 2) Writing proofs, 
with more attention given to language and syntax rather than logic and 
semantics.  
Of course, there are a lot of studies where proof is considered in textbooks but 
not as a main issue (e.g. Bremler 2003). Bremler studies derivative in the 
textbooks during 1967-2002. His thesis is of interest for us because it concerns 
the Swedish upper secondary school textbooks. He briefly describes some 
changes in the treatment of proof and states that after 1994 (when a new 
curriculum was implemented) there is no proof of the general rule for derivative 
of a polynomial in any of the textbooks. The number of textbooks that neither 
show nor mention the proof has doubled since 1994. However, Bremler (2003) 
points out that some of the textbooks have preserved the proof but as an exercise 
with hints.   
3. Methodology 
The upper secondary school mathematics in Sweden is divided into five courses 
from A to E. We chose two commonly used set of textbooks, covering the 
courses from A to E, Liber Pyramid and Matematik 3000. The topics in both sets 
are: Algebra, Geometry, Statistics and probability, Functions and calculus, 
Exponents and logarithms, Trigonometry and Complex numbers. The textbooks 
are divided in chapters and sections within chapters. The sections contain 
explanatory text and examples, followed by exercises (with hints and solutions). 
Most of the exercises are divided into three levels, which correspond to the 
different marks in a three-level grading scale: Pass, Pass with distinction, Pass 
with special distinction.  
When designing the rational of the study one of our aims was to examine the 
frequency of proof items in the textbooks as Hanna and de Bruyn (1999) did in 
their study on Ontarian textbooks. We examined the textbooks for the frequency 
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of occurrence of various kinds of proofs and of items related to constructing a 
proof. Very soon though, we realised that the occurrence of proof or discussion 
on proof was very low compared to the Ontarian textbooks. Furthermore, proofs 
were seldom made explicit in the explanatory sections. It was not reasonable to 
use the quantitative method which Hanna and de Bruyn (1999) developed in 
their study. Therefore, we decided to work mainly with qualitative content 
analysis. We counted the percentage of the proving tasks, studied the textbooks, 
chapter by chapter and picked the items that have some significance for learning 
of proof. Afterwards, we related these items to the research questions, earlier 
research on proof in the textbooks and to the conceptual frame created by 
Nordström (2004). During the exploration we created some posteriori 
subcategories and checked the textbooks again with respect to them.  
4. Results 
We start with reporting to what extend proving tasks occur in different 
mathematical domains and go on with the different aspects of proof. All these 
results have some significance to students’ access to proof and the notion of 
transparency, to which we particularly denote the last section of the chapter.     
4.1. Frequency of different kinds of proving tasks 
The space given to proving tasks is minimal compared to practical applications 
and routine exercises (about 2%). However, there are some special mathematical 
domains where proving tasks are more common: in geometry, in the context of 
verifications of solutions of differential equations and verification of formulas of 
trigonometric functions.  
Example: Show that x2 is a solution for differential equation .0'2 =!yxy   
The pattern is the same as in the Ontarian textbooks, even if the percentages of 
the proof occurrences in Ontarian textbooks were substantially higher in 
geometry. Of all tasks in the geometry chapters in the Swedish textbooks, about 
10% are proving tasks compared to the two Ontarian textbooks where 56% 
respectively 40% of the geometry tasks were proving tasks (Hanna and de 
Bruyn, 1999). Also in the French textbooks proof was concentrated in geometry 
(Grenier, 2000). In the two first courses (A-B), geometry is the only area where 
some proofs are explicitly given in the explanatory sections. 
There are a few tasks dealing with counterexample. There are no indirect proofs 
presented in the ordinary course in either Matematik 3000 or Liber Pyramid. In 
the Ontarian textbooks the concept is introduced in the geometry chapter and 
there are some exercises on it (Hanna and de Bruyn, 1999). Tasks encouraging 
pupils to make conjectures and own investigations are unusual in the Swedish 
textbooks. This was something Grenier (2000) also found out in the French 
textbooks. 
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There are some examples of potentially productive tasks for enhancing students’ 
understanding of proof, but we argue that they are occasional and not 
systematically presented. Further, the range of the types of proofs given in the 
explanatory sections or as exercises are too narrow to be representative of 
mathematical practice. This is something that Hanna and de Bruyn (1999) also 
noticed in their study. The textbooks do not offer practice enough for the 
students to learn to construct different kinds of proofs.   
4.2. How the different aspects of proof are visible in the textbooks 
4.2.1. Inductive/ Deductive approaches 
Students have often difficulties in dealing with algebraic symbols. That is why it 
is an important task for the teaching of mathematics to accustom the students to 
algebraic symbols and help them to realise the generality and the power of using 
such symbols. We found that a clear distinction between examples and general 
proofs is not always made visible. Below follows four different modes we found 
in Liber Pyramid and Matematik 3000 of introducing some rules and formulas:  
(1) The rule is given through some specific examples.  
This mode is used when introducing the rule for multiplication of negative 
integers in Liber Pyramid for course A. In Matematik 3000 an explanation of the 
role is given by a generic example. In Liber Pyramid this kind of explanation is 
given in a subsequent course, i.e., the C-course. 
(2) The general rule is given with algebraic symbols followed by a special case 
as an example.  
(3)  The rule is introduced by generic examples. 
This mode is quite usual in both of the textbook series. After the examples, the 
authors write: ‘Generally (holds)…’ , ‘It is possible to show that generally…’, 
‘One can strictly show…’, ‘In the same way one can prove’… , ‘We can 
obviously formulate the following rule…’, ‘Without a proof we accept the 
following rules…’. Sometimes these comments are lacking and no clear 
distinction is made between the special and the general.   
Example (Liber Pyramid): 

642 7)7777()77(77 =!!!!!=!  
So we get 64242

7777 ==!
+  

In the same manner we get that 85353
3333 ==!

+   
Generally holds nmnm

aaa
+

=!  
Also, in Matematik 3000 exponent laws are introduced in the same way. In 
Liber Pyramid, a general proof is demanded as a middle-level exercise in the 
same section. However, the difference between the generic example and the 
proof is not visible. The proving task starts by ‘Explain that...’.  We think that 
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the generic example can already be seen as an explanation. Then it would be 
more honest to say ‘Prove that it holds for all positive integers’. In the solutions 
a complete algebraic proof is given. 
(4) The general rule with a deductive proof is given. 
There are deductive proofs in the textbooks but they are not always called 
proofs, especially in the textbooks for the two first courses. Later, they are 
sometimes called proofs, sometimes derivations. Very often a specific or a 
generic example is introduced in parallel to the proof but often without an 
explanation of what the general and what the specific is. There is one example 
when the authors first test some properties with specific examples and then 
investigate if ‘it is possible to show the general case’.  There are some tasks 
encouraging pupils to make conjectures and own investigations but they seldom 
lead to a construction of a deductive proof.  
4.2.2. Aspects of Conviction/Explanation 
The proofs in the textbooks are obviously not given as obligatory rituals but in 
order to explain why the statement is true. In Liber Pyramid the proofs in the 
first textbooks are even presented as synonyms for explanations. However, some 
of the proving tasks start with ‘Make believable that… (Troliggör att…)’.   
4.2.3. Aspects of Formality, level of rigour and language 
In contrast to the French textbooks (Grenier, 2000), the aspects of writing proofs 
are not dealt with at all. The style in proofs in the explanatory sections and in the 
solutions and hints is everyday language rather than formal mathematical 
language. Words like proof, definition, assumption are generally avoided in the 
textbooks, especially in the first two courses (A-B). This aspect can have some 
significance to the students’ access and transparency because there are very few 
examples on how to write proofs in the explanatory sections. 
When trying to avoid the word proof a confusion of different notions is easily 
created. In Liber Pyramid, proof is first defined as “logical reasoning without 
gaps”.  The word explanation is used later, instead of the word proof in the 
beginning of the book. Later the authors tell that the Greeks discovered that 2  
was an irrational number, instead of the Greeks proved or showed that 2 was an 
irrational number. In Liber Pyramid for course A the derivations of the formulas 
for areas of polygons are called justification (motivering). However, the proof of 
the area for trapezoids has not even a heading justification and the proof is 
hidden in the text. 
The textbooks do not enhance the students’ abilities to differentiate between 
guesses and assumptions from given facts, as well as deductions and proof, 
which is one of the curriculum goals for all the students. The words like 
assumption, guess/conjecture, given facts or deduction are not even mentioned. 
There are no exercises that shed light on the meaning of definitions. For 
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example, in the geometry chapter in Liber Pyramid, the word definition is not 
used at all even if a definition of the concept ‘definition’ is given in the 
summary of the same chapter.   
4.2.4. Aesthetics 
We found two sentences referring to aesthetic aspects of proofs and theorems, 
both of them in Liber Pyramid: ‘This beautiful and powerful formula can be 
used to…’ (de Moivre’s formula). ‘Pretty and useful!’ (the formula for a 
geometric sum). Aesthetics is an aspect that mathematicians often refer to when 
talking about proof (Nordström, 2004). So it would be natural to make also the 
aesthetic aspects of theorems and proofs visible in the textbooks.    
4.3. Transparency and the students’ access 
Differentiating the tasks in the textbooks is made in a way, which indicates that 
the textbook authors consider that proofs are accessible only for already 
motivated and high achieving pupils. The proving tasks are most often placed in 
the second or third level of difficulty. This is in harmony with the criteria of 
judgement, which the Swedish curriculum states. However, an exception is the 
chapters of trigonometric formulas and differential equations, where examples 
on how to verify equalities are given in the explanatory section followed by 
exercises at all levels of difficulty. 
None of the textbooks included in this study pursued to make proofs visible in a 
manner that focus on the logic and the structure of the proofs. However, there 
are some slight differences between the two sets. Matematik 3000 offers some 
examples on how to prove some geometrical statements and contains more 
proving tasks in geometry than Liber Pyramid. There is also a rational order in 
Matematik 3000, in which the examples and the tasks follow each other and the 
structure gives the students a possibility of building deductive chains and start 
from clear theorems or axioms. That is not always the case in Liber Pyramid 
where you for example meet a middle level proving task that demands the 
knowledge of the similarity of triangles that is given before, but outside the 
ordinary course. Even if Matematik 3000 offers some structure in presentation of 
proofs there are examples on how proof is made invisible as well. For instance 
the word ‘proof’ is omitted when presenting theorems and proofs.  
Unlike Matematik 3000, where we could not find any discussions or 
explanations on proof or theorem, the authors of Liber Pyramid make some 
attempts to explain these notions. In the connection to the theorem The sum of 
the angles in a triangle is 180° the following explanations are given in Liber 
Pyramid (our translation): 
‘A statement that is true is often called a theorem in mathematics, e.g. 
Pythagorean theorem.’ 
‘An explanation for why the theorem is true is called a proof.’  
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The following definitions are from the summary in the end of the geometry 
chapter in Liber Pyramid (our translation). 

Theorem A statement which has been proved.  
For example: The Pythagorean theorem. 

Proof  A logical reasoning without gaps. 
Axiom  A statement that is accepted without a proof.  
  For example: The Parallel axiom in Euclidian geometry. 
Definition Determines (explains) what something is. 
  For example: The definition of a right triangle. 

We notice that there are different definitions for proof and theorem in the same 
textbook.  
5. Discussion  
An interesting theoretical question is to what extent and by what means it is 
possible to make the different aspects of proof visible at the upper-secondary 
level. The authors of Liber Pyramid, for example, attempt to explain the 
fundamental notions statement, theorem, proof and truth but as we have shown, 
it is rather confusing. This is not surprising because there is not a consensus on 
these notions among all mathematicians. The definitions are different in 
classical mathematics and constructive mathematics (e.g. Richman, 1997). In 
classical mathematics a statement is something which is true or false. A proof of 
a statement is a logical reasoning which makes it evident that the statement is 
true. The notion of truth is left undefined. In constructive mathematics, a 
statement is defined if one knows what a proof of the statement consists of. A 
statement is true if there is a proof of the statement. Hence truth is defined as 
provability and this is in fact implicitly also done in Liber Pyramid, since they 
have the following two definitions of theorem: 1) a true statement, 2) a 
statement which is proved. Students consider the act of proving theorems as 
more cumbersome than the act of computing. In the textbooks there are no rules 
for proving and no discussion of how proofs are created and also very few 
examples. In constructive mathematics there is no real difference between the 
activities of proving theorems and of computing (Martin-Löf, 1985). It is 
possible that knowledge of this fact could contribute to the way these notions are 
treated in school. This could be a subject for further investigations. 
Even if it is difficult to give a correct definition of proof there are several ways 
of enhancing students’ understanding of proof. The following example from a 
Finnish textbook shows how, for example, the structure in geometrical proofs 
can be made more visible. In the textbook above the figure, there is first a 
discussion on how to find out from the formulation of the theorem (the base 
angles in an isosceles triangle are equal) what is the assumption and what is the 
statement, which is not necessarily easy for the students to decide. The proof 
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then begins with the assumption (Antagande): ‘The triangle ABC is isosceles.’ It 
follows by the statement (Påstående): ‘The base angles DAC and DBC are 
equal.’ After the proof the logical structure of the proof is illustrated with a 
figure. Such figures are employed also in the exercise sections and in all the 
following geometrical proofs given in the explanatory section. The figures 
illuminate the process of proving by showing its logical structure and how the 
necessary arguments needed for the conclusion are obtained from the 

assumptions, definitions, 
constructions, axioms or 
theorems.  
 
 
 
 
 
 
 

 

Figur 1 Geometri, Gymnasiematematik, lång kurs, p. 88  
6. Conclusion 
The results of our study can be understood when considering them against the 
historical background. In the Swedish national curriculum 1994, the word proof 
was not mentioned. The style of making proof invisible in the textbooks can be a 
reaction against the earlier, very formal way of presenting theorems and proofs. 
It is not an easy task to decide how to treat proof at this level. However, the 
recent curriculum states some goals concerning proof and it is important to 
discuss how the textbooks meet the new requirements.   
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THE MEANING OF PROOF IN MATHEMATICS EDUCATION 
David A Reid,  Acadia University, Canada 

Abstract:  The issue of what mathematics education researchers mean by “proof” and 
“proving” has been the topic of three recent papers. The discussion in those 
papers are analysed in terms of a common terminology for identifying 
characteristics of the meanings of proof current in research.  

Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache (The 
meaning of a word is its use in the language). (Wittgenstein, 1963, §43.).  

Perhaps it is a sign of the maturity of research into the teaching and learning of 
proof and proving that we are beginning to reflect on what it is we are 
researching, and whether, as a community, we are successful in communicating 
our work to each other. Three papers have been presented in the past seven years 
exploring the different meaning for “proof” and “proving” used in different 
research communities within mathematics education.  In this paper I will 
continue this exploration and attempt to create a common terminology through 
which these meanings can be interpreted. 
At PME 21 in Finland, Godino and Recio (1997) described some of the 
meanings proof has in the domains of research in mathematical foundations, 
mathematics, the sciences, and in classrooms. 
At PME 25 in Utrecht I identified four usages of “proof” in mathematics 
education research and one from everyday life (Reid 2001). I classified these 
under the headings “the concept of proof”, “proofs”, “proving” and “probing”.  
At the Taipei International conference on “Mathematics: Understanding Proving 
and Proving to Understand” Nicholas Balacheff (2002/2004) described seven 
different perspectives on proof from which research has been done, which he 
characterised as being based on different researcher epistemologies. 
In this paper I will revisit these three papers, as well as referring to the work of 
some other authors to illustration the different meanings of proof and proving.  I 
will discuss the differing meanings of proof and proving in the research 
literature in terms of several different dimensions along which their meanings 
can differ. These dimensions include the concept of proof, the purpose of 
teaching proof, the kinds of reasoning proving is seen to involve, the needs that 
proving is seen to address and the relationship seen between proof and language. 
These dimensions are not explicitly mentioned in the three papers, but rather I 
have identified them through comparison of the distinctions made in them. Other 
dimensions, or a different set of dimensions, might also be useful for 
characterising the different meanings of proof and proving in use in the 
mathematics education research literature, but my reading of these three papers 
did not suggest them. For example, the word “rigour” is often used in 
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discussions of proof, but it is only used in one of these three papers and so it did 
not provide a useful dimension for characterising the distinctions being made in 
all three. 
The concept of proof 
Godino and Recio point out that what counts as proof is different in formal 
logic, mainstream mathematics, science and schools. This is not really terribly 
surprising, as each of these is a different “domain of explanation”, a phrase 
Maturana (1988) coined to describe communities that have different criteria for 
accepting an argument as an explanation. 

… the observer accepts or rejects a reformulation … as an explanation 
according to whether or not it satisfies an implicit or explicit criterion of 
acceptability …. If the criterion of acceptability applies, the reformulation 
… is accepted and becomes an explanation, the emotion or mood of the 
observer shifts from doubt to contentment, and he or she stops asking over 
and over again the same question. As a result, each … criterion for 
accepting explanatory reformulations … defines a domain of 
explanations, …. (1988, p. 28) 

The concept of proof that Godino and Recio claim operates in the domain of 
formal logic is believed by some researchers in mathematics education to 
operate in mainstream mathematics as well (as I pointed out in my 2001 paper).  
It is the belief that, in the words of Fischbein & Kedem (1982) “a formal proof 
of a mathematical statement confers on it the attribute of a priori universal 
validity.”  This concept of proof is very old, and  here I will call it the 
“traditional” concept of proof. 
Another concept was ascribed to the mathematical domain of explanation by 
Godino and Recio. It has also been proposed by mathematicians, sociologists of 
mathematics, and philosophers of mathematics (e.g., Davis 1972, Lakatos 1976, 
Tymoczko 1986 , Crowe 1988). They  point out that proofs are produced by 
fallible mathematicians and so cannot establish absolute truth. Instead they see 
proof as part of a quasi-empirical process, in which proofs operate to clarify and 
make the detection of errors easier (but never complete). 
Whether a researcher has a traditional or quasi-empirical concept of proof can 
have a significant impact on the research done and the results reported.  For 
example, Fischbein and Kedem (1982) concluded that high school students did 
not understand proof, because the students did not have the traditional concept 
of proof.  Researchers operating from a quasi-empirical concept may have 
reached a different conclusion, or more likely, would have done the study 
differently. 
The purpose of teaching proof  
Balacheff’s first example of a researcher’s epistemology is that of Fawcett 
(1938).  Fawcett undertook a teaching experiment motivated by the belief that 
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the study of proof in mathematics could develop his students’ ability to think 
critically in other domains of explanation. In his introduction he makes it quite 
clear that the only justification he sees for teaching geometry in upper secondary 
school is the transfer of the method of proof learned in that context to other 
contexts. This can be contrasted with the purpose for teaching proof that can be 
inferred from the quotation Balacheff selects from the work of Healy and Hoyles 
(1998): “Proof … exemplifies the distinction between mathematics and the 
empirical sciences.” This suggests a belief that the criterion of acceptability of 
explanation that defines mathematics as a domain of explanation cannot be 
transferred to other domains, as Fawcett claimed. Instead the motivation for 
teaching proof is a better understanding of the nature of mathematics itself, not 
better reasoning in other domains. This dimension of the meaning of proof can 
be labelled Critical Thinking versus Mathematics. 
It is worth pointing out that this dimension is distinct from the dimension of the 
concept of proof. Fawcett is an example of the combination of the traditional 
concept of proof with the Critical Thinking purpose.  Based on their emphasis 
on justification and the generality of a valid proof, I believe Healy and Hoyles 
also work from the traditional concept of proof, but as noted above their purpose 
for teaching proof is Mathematics. In some of my work (Reid 1995) I advocated 
a quasi-empirical concept of proof, but with a critical thinking purpose, 
suggesting that showing students the limits of mathematics would make them 
more critical of the use of numerical arguments in other domains.  
Reasoning 
Balacheff tries to contrast Fawcett’s “epistemology” with that of Harel and 
Sowder (1998), an attempt that fails, I believe, because Fawcett is most 
definitely working from a traditional concept of proof, and Harel and Sowder 
explicitly state that the “proof schemes” they describe are not to be confused 
with mathematical proof at all. At least part of this confusion stems from their 
use of “prove” in the sense it has in everyday English, which is different from 
the mathematical use of the word, so perhaps Harel and Sowder could be said to 
be using the “everyday” concept of proof. One might expect that this confusion 
is lessened in Romance languages in which word like “démonstration” and 
“demostración” exist to refer specifically to  “mathematical proof”, but as the 
everyday words “preuve” and “prueba” are also used to refer  “mathematical 
proof” confusion can still occur.  (The possibility for confusion becomes almost 
absurd when comparing work written by native speakers of English and romace 
languages.  For example, Sutherland, Olivero & Weeden (2004) describe the 
work of a teacher who stressed the difference between proof and demonstration 
in her teaching. Unfortunately, while one might think it reasonable to translate 
“proof” as “preuve/prueba” and “demonstration” as “démonstration/ 
demostración”, the current usage of these words in the UK schools is such that 
“proof” should be translated as “démonstration/demostración” and 
“demonstration” as “preuve/prueba”.  

Working Group 4

460 CERME 4 (2005)



Harel and Sowder’s work does, however, serve to illustrate another important 
dimension along which meanings of proof can differ: the kind of reasoning 
employed in proving.  Their “proof schemes” include reference to authority and 
empirical reasoning as well as deductive reasoning, each proof scheme being, in 
fact, a specific kind of reasoning.  Other researchers have suggested other kinds 
of reasoning (abductive, analogy) and sub-types (generic example) that will be 
familiar to most readers.  
There is another meaning of proving in which it can involve several types of 
reasoning at the same time.  Godino and Recio point out that in science proving 
involves a mixture of kinds of reasoning and the larger patterns of proving 
processes described in Knipping (2003) and Reid (2002) also involve other 
kinds of reasoning combined with deductive reasoning.  
The majority of research on proof, however, uses “proving” in ways that assume 
it must involve deductive reasoning. Some, in fact, define proving in terms of 
the kind of reasoning involved and restrict it to deductive reasoning.  For 
example, ten years ago I defined proving as “investigating using deductive 
reasoning” (Reid 1995 p. 7), and the NCTM Principles and Standards describes 
proofs as: “arguments consisting of logically rigorous deductions of conclusions 
from hypotheses”(NCTM 2000 p.56).   
Thus, in the mathematics education research literature, one can observe three 
different points on the reasoning dimension of the meaning of proof: Several 
distinct kinds of reasoning are involved in proving; or several kinds of reasoning 
in combination are involved in proving; or deductive reasoning alone constitutes 
proving. This dimension is distinct from the dimensions of concept and purpose, 
but it seems reasonable to suppose that researcher with a traditional concept of 
proof would be more likely to see proof as purely deductive, while those with a 
quasi-empirical concept of proof might be more inclined to view proving as a 
combination of kinds of reasoning.  
Needs  
One of the most astonishing claims in the paper by Godino and Recio is their 
assertion that “mathematics students must [use proof to] convince themselves, 
and convince their teacher of the necessary and universal truth of theorems” (p. 
2-318).  It is not clear how a student can convince a teacher of something that 
the teacher either already believes (if the teacher has a traditional concept of 
proof) or cannot believe (if the teacher has a quasi-empirical concept of proof). 
And as to convincing themselves, Harel and Sowder’s work suggests that 
students are unlikely to use mathematical proof to convince themselves of 
anything. This raises the question, when students engage in proving, what need 
are they trying to address? 
Some researchers, notably de Villiers (1990) and Hanna (2000), have listed a 
range of functions for proof, or needs that proof fulfils for individuals, including 
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verification, exploration, explanation, systematisation, communication and 
social acceptance. Most researchers in mathematics education take one of four 
approaches to considering what need motivates proving.  Many, especially those 
who have the traditional concept of proof, assume implicitly or explicitly that 
the need of verification is the only one that motivates proving. Others (e.g., 
Thurston 1995, Mariotti 1997) describe the needs that motivate research 
mathematicians to prove and imply that the same needs should motivate students 
in schools to prove.  Still others (e.g., Hanna 1989) describe the specific context 
of schools and suggest a need for proving appropriate to the school context, not 
necessarily a need that motivates research mathematicians. Finally, there are 
researchers (e.g., Reid 1995) who examine the mathematical activity of students 
and who identify the needs that in the existing school contexts do motivate 
students to prove. 
The implications of differing beliefs about the needs that motivate proving for 
research and teaching are clear. Teachers who begin with an assumption that 
proving is about verification will create situations of doubt to motivate proving, 
while those who see explanation as motivating proving will create situations of 
wonder. Researchers who associate proof with verification (e.g., Harel & 
Sowder, 1998) will focus on the kinds of reasoning students use to verify, while 
those who see proving as motivated by many different needs will focus on other 
issues. 
It is unlikely that all the possible combinations of the dimensions of the concept 
of proof and the need for proving can coexist. For example, a researcher who 
has a traditional concept of proof is likely to suggest that students’ needs to 
verify or systematise could or should motivate them to prove. On the other hand, 
a researcher who has a quasi-empirical concept of proof might stress the needs 
to explore, to communicate, to gain social acceptance or to explain. 
Proof and language  
One of the distinctions Balacheff makes concerns the relationship between 
language and proof.  He claims that for Duval (1991) proofs must rely only on 
syntactical elements, while others would claim that proofs rely on semantic or 
social elements for acceptance (Balacheff’s examples are Pimm, 1987, and 
Burton and Morgan, 2000).  Godino and Recio suggest a distinction that is  
useful for clarifying Balacheff’s. They describe analytical and substantive 
arguments (from Krummheuer 1995, following Toulmin). Analytical arguments 
are based on specified, deductive rules of inference and explicit axioms; as such 
they are logical tautologies.  Substantive arguments expand the meaning of what 
is argued. Godino and Recio use these categories to distinguish proofs in formal 
logic from other proofs, but Balacheff’s distinction is between epistemologies of 
researchers in mathematics education.  
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It is evident that a researcher whose concept of proof is quasi-empirical is 
unlikely to mean by “proof” something analytical, however the substantive 
position seems compatible with both concepts.   
The meaning of proof 
Maturana (1988) emphasises that the criterion of acceptance used in a domain of 
explanation is often (necessarily) implicit. This may be part of the difficulty we 
have, as researchers in mathematics education, in being clear about what we are 
talking about when we refer to “proof” and “proving”. That there are differences 
is apparent from the examples presented by Balacheff and in my 2001 paper, but 
it is only by considering many such examples that patterns of difference become 
evident. I speculate that it is possible to place each researcher in mathematics 
education somewhere in the space defined by the dimensions I have outlined 
above, but it is impossible to do this working only from existing publications, as 
we, as a community, do not make our positions clear. Perhaps the work of 
Balacheff, Godino and Recio, and my papers, will make it easier for us to 
communicate our positions, and thus provide a foundation for the kind of 
interaction needed to strengthen a community.  
One reason we have difficulty in being clear is that the category “proof”, like 
most categories, is not well defined, and probably cannot be. As Balacheff 
asserts, “almost all researchers will agree on a more or less formal definition of 
mathematical proof” (p. 1) but that definition, as Godino and Recio note, is 
useful only when working in the domains of logic and the foundations of 
mathematics. Most research mathematics and teacher of mathematics must 
contend with an informal and implicit definition, based on experiences they have 
had with prototypical examples of proofs. 
The linguist Eleanor Rosch (Varela, Thomson & Rosch, 1991) has analysed the 
way categories are described in language, and has concluded that we do not have 
a definition in our heads for the words we use to classify our experiences.  
Instead we have what she calls “prototypical” examples.  For example, if I ask 
you to think of a bird, you are likely to think of a common bird that lives where 
you live.  You are unlikely to think of a penguin or an ostrich. For birds which 
resemble our prototype we recognise them as birds without making any recourse 
to a definition.  For birds far from our prototype we rely on expert opinions to 
establish the borders of our categories. The experts tell us that penguins are 
birds, even though they do not fly and behave very much like seals, because they 
lay eggs. But on the other hand, they tell us that platypuses are not birds, even 
though they lay eggs and behave in many ways like ducks. 
An experiment 
At CERME 4 the working group of proof brought together fifteen researchers 
with an interest in proof, from ten countries. I asked the fourteen others to form 
seven pairs, and to select the most exemplary proofs from a set of six I provided. 
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I have collected about fifty proofs, mostly from research papers on the topic (the 
full set is available on request). I distributed 40 of these (plus two duplicates) to 
the pairs.  After choosing not more than three proofs as more exemplary than the 
others, they were to join another pair, and again select the most exemplary and 
discard the least exemplary.  My plan was that either we would arrive at a 
consensus of a few very good examples of what a proof is (demonstrating that 
we share a common prototype for the category) or we would fail to reach a 
consensus (demonstrating that there are serious differences within the 
mathematics education community concerning what “proof” means). What 
actually occurred was a lot of interesting discussion within the pairs and groups 
of four, but the task of comparing and choosing exemplary proofs was so time 
consuming that the original plan had to be abandoned. 
Nonetheless, some results can be reported. Three pairs (coded A, B, C) made 
two rounds of selections, and in the end they had selected three exemplary 
proofs from the 18 proofs given them (which included one duplicate). They 
selected #16, a visual “dot” proof that the sum of two even numbers is even, 
#19/44 a proof that the angle sum of a triangle is 180º, and #23, a “Behold!” 
proof of the Pythagorean theorem. #19/44 was the duplicate, a proof copied 
from one of the Hoyles-Healy-Kuchemann questionnaires (see Figure 1).  

Proof that the sum of the interior angles of 
a triangle is 180 degrees 

 
 

Figure 1:  A exemplary proof, #19/44,  
from Hoyles et al.  

Figure 2:  An exemplary proof, #10,  
cfrom Hanna (1989) 

This proof was judged to be a better example of a proof than 13 others, via 
direct or indirect comparisons (the indirect comparisons occurred when it was 
judged to be better than a proof that had previously been preferred to others). Of 
course, as it wasn't compared to most of the proofs, or seen by most of the 
participants, it may not really be the best example. All three of the proofs chosen 
by this group use diagrams. In the second round they eliminated two other 
proofs, also using diagrams, of the Pythagorean theorem (#43) and the 
commutativity of multiplication (#30). In the first round the three groups A, B, 
C eliminated 12 proofs, 2 with diagrams and 10 without.  
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Pair G selected three proofs that have an algebraic element (#10, see Figure 2, 
#13 & #24, of the sum of the first n integers, the sum of two even numbers, and 
the Pythagorean theorem). The other formats available were an action proof 
(from Tall 1995), a narrative proof from Euclid (Book IX, Prop 20, the 
infinitude of primes) and an empirical argument. Their selection seems to have 
been influenced by the use of algebra, at least more than by the reputation of the 
author (Euclid) or the accessibility (action) of the proofs. 
Pair E selected three narrative proofs in the domain of number theory (#8, #27, 
& #28, of the sum of the first n integers, the irrationality of √5 and the infinitude 
of primes). #8 also includes a visual generic example.  They rejected a textbook 
geometry proof of an insignificant theorem, a proof from Euclid  (Book I, Prop 
1) and a non-standard proof of the angle sum of a triangle (based on 
tessellations, from Hoyles et al.).  It may be that the narrative element in the 
proofs they chose is coincidence, but their preference for number theory over 
geometry seems clear.  
When a similar experiment was done at Universität Oldenburg with only ten 
proofs, #8 and #10 (which are included in the choices of groups G and E) were 
selected as highly exemplary. 
Note that the nine proofs chosen by these five pairs are proofs of only six 
theorems, all of them well known.  This is partly a result of the set of proofs 
they had to choose from, as half the proofs given were proofs of these six 
theorems, but the fact that these and only these were selected suggests that the 
mathematical significance or familiarity of the theorem proven may make a 
proof more exemplary.   
Pair D combined with either Pair E or Pair G in the second round (I have no 
method of determining which pair they joined), at which point the two proofs 
they had selected in the first round were eliminated. One of their selections, #11, 
is similar in structure to #8 and #10, but uses a numerical generic example. The 
other, #31, is a diagram based proof of an algebraic identity. Neither of their 
choices include algebra or a narrative element, and this might have been a factor 
in their elimination when Pair D joined another pair. 
Pair F spent a great deal of time discussing the proofs they were given, and by 
the end of the allotted time they had eliminated one, a formal proof from a logic 
text.  
What does all this mean? There seems to be some common ground about what a 
proof is, at least in the context of this working group. But there seems also to be 
some differences. There is more work to be done before we have a clear idea of 
what those differences are and what significance they have for the research we 
do. But if we can acknowledge that there is an issue here, and discuss the 
characteristics of proof, we may be able to come to, if not agreement, then at 
least agreement on how we differ.  
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ABOUT A CONSTRUCTIVIST APPROACH FOR STIMULATING 
STUDENTS’ THINKING TO PRODUCE CONJECTURES AND 
THEIR PROVING IN ACTIVE LEARNING OF GEOMETRY 

Oleksiy Yevdokimov, Kharkov State Pedagogical University, Ukraine  
 

Abstract: The paper describes processes that might lead secondary school students to produce 
conjectures in a plane geometry. It highlights relationship between conjecturing and 
proving. The author attempts to construct a teaching-learning environment proposing 
activities of observation and exploration of key concepts in geometry favouring the 
production of conjectures and providing motivation for the successive phase of 
validation, through refutations and proofs. Supporting didactic materials are built up 
in a way to introduce production of conjectures as a meaningful activity to students. 
 
Background and theoretical framework 

Conjecturing and proving activities have traditionally been given significant 
attention throughout the Grades in the schools. In the most of the countries current 
mathematics education standards contain a special section on reasoning and proof, 
investigations, conjectures, evaluation of arguments and the use of various methods 
of proofs (e.g. NCTM Standards, 2000; MIUR, 2004; UMES, 2003). Therefore, 
different questions concerning argumentation and proof are constantly in the focus of 
researchers and mathematics educators’ interest. 

During the last years a considerable amount of research, concerning the 
processes of conjectures production and construction of proofs was connected with 
interactive learning environment and different software (Harel and Papert, 1990; 
Davis, 1991), in particular, dynamic geometry software (Arzarello et al, 1998; 
Furinghetti and Paola, 2003; Mariotti, 2000). Neither considering a technology aspect 
within the theme of argumentation and proof in full nor restricting the use of 
technology in that direction, we would like to put into consideration a constructivist 
didactical approach, which, on the one hand, can be successfully used in stimulation 
students’ active research interest while learning mathematics, in particular, geometry, 
on the other hand, provides possibility for investigation students’ abilities in their 
development to produce conjectures. 

Within the long-term research project on active learning of mathematics in a 
constructivist framework for secondary school students the author gave a course on 
plane geometry for 45 students (8th Grade, 14-15 years old) during the year. All 
students didn’t take any courses before, which were aimed on formation of skills to 
produce conjectures specially. Teaching programme of the course consisted of 16 
theoretical modules with support of the didactical materials for each of them. 

The aim of the paper is to describe a didactical approach to organise students’ 
thinking leading to conjectures production on the base of materials of this long-term 
research project, which were worked out and used as support for active learning of 
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geometry in a constructivist framework. These materials were built up in a way to 
introduce conjectures production as a meaningful activity to students. 

Our theoretical position is grounded in the theory of active learning processes 
in mathematics (Hiebert, 1992; Wang, Haertel and Walberg, 1993). We took into 
account that current learning perspectives incorporate three important assumptions 
(Anthony, 1996): 

• learning is a process of knowledge construction, not of knowledge 
recording or absorption; 

• learning is knowledge-dependent; people use current knowledge to 
construct new knowledge; 

• the learner is aware of the processes of cognition and can control and 
regulate them. 

From a constructivist perspective it is easier for a student, under appropriate 
arrangement of teaching, to act as an architect, to reveal the truth and construct new 
knowledge, than to learn ready-made knowledge without understanding its origin, 
meaning and interrelations (Davis, 1991). In other words, “learning is a process of 
construction in which the students themselves have to be the primary actors” (von 
Glasersfeld, 1995). Thus, the view of the learner has changed from that of a passive 
recipient of knowledge to that of an active constructor of knowledge. 

We would like to consider conjecturing process from the didactical point of 
view, i.e. to show how it can be constructed similarly to the process of mathematical 
research and how this kind of teaching contributes to the development of students’ 
mathematical thinking. de Villiers (1996) and Hanna (2000) noted that in actual 
mathematical research mathematicians have to first convince themselves that a 
mathematical statement is true and then move to a formal proof. At the same time 
conjecturing with verification, exploration and explanation constitute the necessary 
elements that precede formal proof (“conceptual territory before proof”, Edwards, 
1997). Yevdokimov (2003) proposed to consider an Active Fund of Knowledge of a 
Student (AFKS) in the given area of mathematics. As AFKS we called student’s 
understanding of definitions and properties for some mathematical objects of that 
domain and skills to use that knowledge. The key question in the context of 
conjecturing and proving was the following: where, when and for what of 
mathematical objects a student would apply a certain mathematical property for 
proving and whether it would be necessary to apply that property generally in that 
case. 

Modifying this idea, we distinguished the separate (smaller) parts of AFKS, 
which deal with a certain mathematical object, for consideration and, after that, 
motivated student’s using that separate parts of AFKS altogether as a whole AFKS for 
production new conjectures and constructing their proofs, even for other 
mathematical objects. Therefore, on the first stage of our research we attracted 
students’ attention and focused exploratory work on using and developing the 
separate parts of their AFKS as much as possible. On the second stage, we started to 
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increase AFKS properly, stimulating students for active mental work with using all 
separate parts of AFKS simultaneously.  

We would like to emphasize a dual correspondence between separate parts of 
AFKS (personal attribute) and “conceptual territory before proof” (impersonal 
attribute). More precisely, parts of AFKS act in “conceptual territory before proof” 
and vice versa, Edwards’ term contributes to increasing every part of AFKS, which 
acts in it again and so on (Scheme 1). 

 
 
                                                                                          separate part 
                                                                                             of AFKS 
                            Conceptual 
                 
                              Territory  
                   
                                Before 
 
                                 Proof                                               separate part 
                                                                                            of AFKS 
                     

 
 
 

Scheme 1. 
Thus, on the first stage of the research within the every module the main task 

for developing and increasing the separate parts of AFKS, was the following: 
“Find out as many properties of a certain mathematical object as you can”. 
On the second stage of the research within the every module we proposed for 

students the following task: 
“Find out properties of something using your previous findings for certain 

mathematical objects”. 
Now we need to clarify what it means: to find out or reveal a property. On the 

one hand, any property gives relationship between conjecturing and proving, since for 
obtaining a property we have to produce conjecture and then prove it. On the other 
hand, any property gives a clear structure from premise to result (Scheme 2). And 
such form of any property is a final product of students’ findings for the task. 

 
Premise       ⇒       Result 

 
Scheme 2. 

At the same time, in generalising context a property can be considered in three 
more forms, which highlight importance of all-sided investigation in relationship 
between conjecturing and proving (Scheme 3). 
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Premise       ⇒            ? 
 

        ?             ⇒       Result 
 

      ?             ⇒             ?   
 

Scheme 3. 
However, a mathematical conjecture does appear from nowhere, without links 

to its “historical-mathematical neighbourhood” (Yevdokimov, 2004). Conjecture is 
a result of applying AFKS to different mathematical objects within “conceptual 
territory before proof” taking into account possible generalisation, systematisation 
and analogue. Like Brown and Walter (1990) we propose to consider "situation", an 
issue, which is a localised area of inquiry activities with features that can be taken as 
given or challenged and modified. 

Turning to the forms, it is necessary to note that for finding any property 
students have to move through its forms of Scheme 3 for obtaining that property in 
the form of Scheme 2. Moreover, the first two forms of Scheme 3 refer to the first 
stage of the research and the last form refers to the second stage. Of course, it doesn’t 
relate to all properties, which were known for students before. Here, we speak of the 
development of conjecturing process in the student’s mind only. 

For illustration the schemes above we would like to demonstrate one well-
known property of bisectors of a triangle in all forms (property B1 from Appendix). It 
is shown in the following table. 

 
 

Property 
 

All bisectors of a triangle intersect in one and the same 
point 

 
Scheme 2 

     We have a triangle                                                                                                                                                                                       
         and three its                ⇒     Bisectors intersect in one 
            bisectors                                and the same point  

     We have a triangle                        
         and three its                ⇒                        ? 
            bisectors 

 
Property  

in the 
generalising 

context 
                                                            We have a point        
                   ?                        ⇒            inside a triangle 
            

 
 

 
 
Scheme 

3 

“Situation”: a 
triangle and its 
components 

                             
                   ?                        ⇒                        ? 
      

 
Table 1. 
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Description of students’ activities and data collection 
Taking to attention the scope of the paper we would like to describe and 

characterise students’ conjecturing and proving activities for a part of the module 
concerning a triangle and some of its properties and present a sample of the didactical 
material (see Appendix) for this part. 

We proposed three tasks in succession for students’ work on their own. 
Sufficient period of time was given for every task. Our first task was the following: 

Task 1. 
“Find out as many properties of a bisector of a triangle as you can”. 

We would like to note that some bisector’s properties were connected with 
height and median of a triangle. Therefore, in the first part students had been asked to 
explore the similar tasks for height and median too: 

Task 2. 
“Find out as many properties of a height of a triangle as you can”. 

Task 3. 
“Find out as many properties of a median of a triangle as you can”. 

As we mentioned above such tasks were aimed on developing and increasing 
separate parts of AFKS (AFKSbisector,, AFKSheight,, AFKSmedian correspondingly). 

It is necessary to note that some properties were known for students before, 
therefore, at first, we asked students to point out all known properties. After that, 
students could begin their inquiry work to produce conjectures and prove them. At 
the same time students had been asked to prove every property without any 
dependence whether it was indicated as known before or proposed as a conjecture. If 
a student proposed at least 5 conjectures independently, at least 3 of them with 
proofs, and was not able to produce other conjectures, then he/she had access to 
didactical material with extended list of properties for bisector (see Appendix), height 
and median. After that students had been asked to prove those properties, which were 
unrevealed or unproved for them before. At these stages help of a teacher was an 
acceptable, but not necessary condition for students. Instead of teacher’s help 
students could take advantage of extended didactical material (it is omitted in the 
paper), which contained not only properties themselves, but short remarks and 
instructions for proving every property. After getting acquaintance with proofs 
students took for consideration the next task.  

This procedure was repeated in succession three times for every task. Results 
became better every time, it witnessed that most of the students increased their AFKS 
and developed their abilities to produce conjecture. Full data collection of students’ 
progress in increasing their AFKSbisector in the first stage of the research is given in 
Table 2. The same tables were formed for AFKSheight, and AFKSmedian 
correspondingly (they are omitted in the paper). 
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Property B1 B2 B3 
Status of 

the 
property 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 
Number of 

students 
37 6 41 39 6 43 24 20 42 

Property B4 B5 B6 
Status of 

the 
property 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 
Number of 

students 
39 2 40 5 38 43 32 10 34 

Property B7 B8 B9 
Status of 

the 
property 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 
Number of 

students 
2 7 32 3 29 30 2 - 30 

Property B10 B11 B12 
Status of 

the 
property 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 
Number of 

students 
3 - 34 - 28 19 2 4 19 

Property B13 B14 

Status of 
the 

property 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 

was 
known 
before 

proposed 
as a 

conjecture 

proof 
was 

given 
Number of 

students 
4 2 18 1 29 15 

 
Table 2. 

 
Summary data collection of students’ progress in increasing of their 

AFKSbisector, AFKSheight, and AFKSmedian in the first stage of the research is given in 
Table 3. 

We would like to remark that didactical materials contained 14 properties for 
bisector, 16 ones for height and 12 properties for median correspondingly. 
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Properties B H M B, H, M 
altogether 

Number of students, who proposed at least 12 conjectures 2 5 1 1 
Number of students, who proposed at least 11 conjectures 3 6 1 1 
Number of students, who proposed at least 10 conjectures 5 8 2 2 
Number of students, who proposed at least 9 conjectures 7 9 7 6 
Number of students, who proposed at least 8 conjectures 13 14 14 9 
Number of students, who proposed at least 7 conjectures 14 16 17 13 
Number of students, who proposed at least 6 conjectures 17 20 21 17 
Number of students, who proposed at least 5 conjectures 29 30 31 28 
Number of students, who proposed at least 4 conjectures 35 39 38 35 
Number of students, who proposed at least 3 conjectures 38 41 41 36 
Number of students, who proposed at least 2 conjectures 41 42 43 40 

 
Table 3. 

 
On the second stage we proposed the following task for students’ work on their 

own: 
“Find out properties of something using your previous findings and exercises 

for bisector, height and median”. 
As we mentioned above such task was aimed on developing and increasing of 

AFKS properly, using AFKSbisector,, AFKSheight, and AFKSmedian simultaneously.  
Shortly, we would like to attract attention for students’ strategy to produce 

conjectures, which was prepared in our teaching-learning environment and used by 
students on their own with full understanding and not by chance. 

On the base of B2 (see Appendix) 21 students proposed to construct different 
geometrical objects in a triangle. Thus, in that way 15 students came to the concept of 
symmedian of a triangle. After having a geometrical object, where content of their 
AFKS could apply to, 14 students produced a conjecture of existing a point of 
intersection for three symmedians of a triangle. As a result Lemoine point of a 
triangle was revealed. Property B1 significantly contributed for students’ inquiry 
work in that direction. At the same time property B4 led to the students’ conjecturing 
work (5 students did it successfully) for finding the following property: 

“Symmedians of a triangle divide the opposite sides of it into the parts, which 
are proportional to the squares of the corresponding adjoining sides of this triangle”. 

It is important to note that other properties of Lemoine point were conjectured 
and proved by students in the similar way in our teaching-learning environment. 
Final remarks 

At the end we would like to emphasize peculiarities of students’ conjecturing 
and proving activities in our research. At first, they do know direction of their work, 
i.e. a mathematical object for which they have been asked to produce conjectures, but 
the ways for achieving this aim are not indicated for students. At the same time initial 
information and further ideas can be taken from that properties, which were pointed 
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out by students right away as known for them before. At last, directions of their 
further work are not indicated for students, but most of them are able to imagine how 
possible properties would look like. 

Our results, although local, support hypothesis that most of the students can be 
successfully involved in the conjecturing and proving activities in different levels, if 
learning has active and constructive nature. In this work we have shown effectiveness 
of a constructivist approach to organise students’ thinking leading to production of 
conjectures. We found out that a specific learning-teaching environment can 
significantly contribute to students’ progress in learning geometry. 
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Appendix 

Bisector’s properties 
B1. All bisectors of a triangle intersect in one 
and the same point, it is a center of the 
circumference, which is inscribed in that 
triangle. 

A

I
A1

C

B

B
1

C
1  

B2. A bisector is between height and median 
from the same vertex of a triangle. In 
isosceles triangle bisector, height and median 
coincide. B

C

AHLM  
B3. Bisectors of interior and exterior angles 
of the same vertex of a triangle are 
perpendicular. 

 

 
B4. The bisectors of a triangle divide the 
opposite sides of it into the parts, which are 
proportional to the corresponding adjoining 
sides of this triangle. a

b

a

b

1

1

= . 

a b

a

c

b11

 
B5. The bisector of the triangle with sides a, b, c divides the opposite side c on the segments 
a

ac

a b
b

bc

a b
1 1=

+
=

+
, . 

B6. If a segment, which connects a vertex of a triangle with a point on the opposite side of that 
triangle, divides the opposite side into the parts, which are proportional to the corresponding 
adjoining sides of this triangle, then it is a bisector. 
B7. If BD is a bisector of exterior angle C, then BD

AD

BC

AC
= . 
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AB

C

D
 

B8. If bisectors of a triangle intersect in the 
point I, then it divides bisector CC1 in the 
following relation CI

IC

a b

c
1

=
+ . 

A

I
A1

C

B

B
1

C
1  

B9. Length of bisector 

1) l
ab

C

a b
c
=

+

2
2

cos

; 

2) l ab a b
c

2

1 1
= ! . 

a b

a

c

b11

AB

C

lc

 
B10. Angles between bisectors: 

2
1

BA +
=! ; 

2
2

CA +
=! ; 

2
3

CB +
=! ; 

∠1+∠2=90°+A/2; 
∠1+∠3=90°+B/2; ∠2+∠3=90°+C/2. A

B

C

1

1
22

3

3

 

B11. A bisector of a triangle and a mid-
perpendicular to the opposite side of a 
triangle intersect in a point, which belongs to 
the circle described around this triangle 

A

B

C

 
B12. If point I is a centre of inscribed 
circumference into triangle ABC and point C1 
belongs to described circumference around 
this triangle and line CI simultaneously, then 

C1A=C1B=C1I=2
2

R
C

sin . 
AB

C

I

C
1  

B13 If point I is a centre of inscribed 
circumference into triangle ABC and point C1 
belongs to described circumference around 
this triangle and line CI simultaneously, then 
CI IC Rr! =

1
2 . 

AB

C

I

C
1  

B14. A bisector divides an angle between 
radius of described circumference around 
that triangle and its height from the same 
vertex of the triangle on two equal parts. 

O

 

Working Group 4

478 CERME 4 (2005)


	Working Group 4
	Mariotti
	Cabassut
	Cañadas
	Durand-Guerrier
	Figueiras
	Jahnke
	Küchemann
	Nordström
	Reid
	Yevdokimov




