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Between 15 and 20 persons have participated in the seven sessions intended for 

work group; the first five were devoted to discussing the nine accepted papers and the 
last two to the preparation of the final report. In order to work in an efficient way, the 
first sessions were divided into three parts, centered on particular themes : 

- sessions 1 and 2 (Pesci, Edwards, Acevedo)2 dealt more especially with 
metaphors 
- session 3 (Jore, Von Hofe) was about the use of metaphors in the modelling 
process 
- sessions 4 and 5 (Söbbeke, Fransson, Xistouri, Gagatsis) were centered on 
visualisation. 

During the sessions some important points have been discussed and many 
questions raised. Here are some of them. 

Through the various contributions of our group we could see that the word 
‘metaphor’ was used with different meanings. Even if originally a metaphor has a 
linguistical nature, it is now used with a much broader sense : “metaphor does not 
reside in words ; it is a matter of thought” [Lakoff & Nuñez 1997]; for instance, 
“diagrams on the blackboard, coloured blocks that kids use in representing battles or 
the raised eyebrow of an actor can all be considered metaphorical expressions” 
[Barker 1987]3. The metaphorical discourse, connecting both hemispheres of the 
brain, is able to give a more profound dimension to the construction of knowledge 
(LeDoux, 1998). 

Fundamentally, a metaphor can be seen as a correspondence between two 
domains : a source domain and a target domain. At the beginning, these two domains 
were linked (or at least the link was clear to everybody), but as time passed on the 
link sometimes disappeared. For instance4, ‘kite’ was first a word used to speak of a 

                                                 
1  Four leaders were initially intended for preparing this working group: Bernard Parzysz, Angela 
Pesci, Moisés Coriat and Maciej Klakla, but unfortunately Moisés and Maciej could not attend 
CERME 4. We are most grateful to Christer Bergsten, from the organising comittee, for kindly 
accepting to help us in this task. 
2 The names in italics refer to authors who presented a paper in the group; the papers will be found 
hereafter. 
3  Quoted in [Pesci 2003]. 
4  This example was given by Julianna Szendrei. 
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special quadrilateral, referring to a concrete device, but it has now become the name 
of this quadrilateral, even for children who have never seen a kite and do not know 
what it is. This poses the question of what happens when a metaphor becomes a 
mathematical concept (i.e. when the target domain becomes detached from the source 
domain). 

Pesci gives a list of metaphors which are very common in mathematics [Pesci 
2003] : “numbers as objects collections (...); zero as an empty box (...); addition as 
putting objects together (...); multiplication as a repeated addition (...); equation as a 
balanced couple of collections with a same weight ; (...) function as a machine which 
‘takes’ a number, ‘works’ on it and produces another number.” During the sessions, 
we could also see some examples of how concrete devices can be used as metaphors 
for mathematical concepts and the problems which may result (Jore, Fransson); we 
could also see and interpret children’s kinesthetic experiences and gestures5 as 
metaphors, such as ‘split’ (gesture of the hand) for fractions or tapping fingers on 
one’s cheek for counting (Edwards); we also saw that some gestures can only be 
evoked as ‘fictive motions’, e.g. when the graph of a function is considered as a point 
moving on it from left to right (Acevedo).  

We could also see that metaphors and representations are used not only for 
communication purposes, but also that basically they can be considered as thinking 
devices intended for helping communication and thinking; thus it is in fact a tool for 
mental activity and not a didactical construct. Indeed, the metaphorical discourse as 
occasion for metacognitive reflection was exploited during experiences for 
mathematics teachers preparation (Pesci) 

When using a metaphor with students, you try to reach something common to 
everybody (within the domain target), but it sometimes does not work, because they 
are not so familiar with this domain as you thought (Acevedo); moreover, all 
metaphors are inadequate in some way, because some features of the metaphorical 
object cannot fit with the theorical object. For instance, integers constitute a ‘tacit 
model’ for any set of numbers [Fischbein 1989], which makes difficult for some 
students to understand that multiplication (resp. division) does not always produce a 
bigger (resp. smaller) number (Vom Hofe). In order to deal with such mismatches 
between teacher’s and students’ metaphors, it is important to study the relation 
between metaphors and mental models, as well as the limits of metaphors. This also 
implies the need to make students aware, for a given metaphor, of which elements are 
pertinent and which are not. In this view, a specific work has also to be undertaken 
with teachers (Jore). 

More generally, the aim of representations is to develop abstract ideas. 
Experience shows that various modes of representation are in play in the teaching of 
mathematics, even in the study of a given mathematical concept : a given concept can 
be described through differents types of representations: for instance (among many 
                                                 
5  A ‘gesture’is intended for others, while a ‘kinesthetic experience’ is intended for one’s self. 
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others examples) decimal and fractional writings of decimal numbers, graphical and 
algebraic representations in analytic geometry. It is thus important to take a thorough 
interest in the relations between them, which leads to the notion of representation 
register, developed by Duval [Duval 2004]: it is a coherent system used for 
representing mathematical concepts; a register can be identified through three 
fundamental activities : recognise whether a given representation belongs to it or not, 
transform a representation into another within the same register (processing) and 
transform a representation into a representation of another register (conversion). 

Among other subjects, we could see, through examples, the richness and 
variety of the ways used by students to interpret representations, an area which is still 
not much explored (Söbbeke); through other examples, we discussed on the fact that 
most students have difficulties to coordinate different registers and to move from one 
to another (Gagatsis), but also that an interplay between visual and symbolic 
representations could be promoted by having an artefact available in students’ group 
work (Fransson). We had also a long discussion trying to understand the strategies 
and images used by a dyslexic child in arithmetic (Xistouri), a discussion which was 
still more interesting since one of the participants had been a dyslexic child. 

But our purpose was also to propose guidelines for prospective work, and 
finally, during the last two sessions devoted to preparing the final report, several 
questions for future research were raised: 

1- What are the characteristic metaphors, in use or possible, for different 
domain of mathematics? For different systems of representation? 

2- How do metaphors and representations contribute to learning and 
communicating mathematical concepts? How does the way of using them 
influence the construction of mathematical concepts? 

3- How can we facilitate students’ passage from one type of representation to 
another? 

4- Moreover, metaphors evolve through time. Can teaching have an influence 
on this change, and how?  
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TO VISUALISE THREE-DIMENSIONAL ANALYTIC 

GEOMETRY 
 

Christer Bergsten, Linköpings universitet, Sweden 
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Abstract: To investigate students’ ways of working with concrete materials in 
mathematics, a three-dimensional static artefact was constructed and made available 
to upper secondary students, with pre-knowledge only in two-dimensional coordinate 
geometry, for solving problems about planes and straight lines in space. Artefact 
interactivity was generally high, even students also disregarded the model to work 
only numerically with the coordinates, building on knowledge about lines in two 
dimensions. The model was used when trying to convince other students in the group. 
 
Keywords: artefact, visualisation, concrete material, problem solving, analytic  geometry

 
Artefacts in mathematics education 
The use of artefacts such as concrete materials to support mathematics learning is 
commonplace in primary education, though less common in upper secondary and 
tertiary education. Most research studies on the use of concrete materials in 
mathematics education have focussed on the effect on learning outcomes, often by 
experimental design comparing a treatment group and a control group (e.g. Sowell, 
1989). Investigations of how students interact with such materials are more rare. As a 
consequence, we need more knowledge of how upper secondary students work with 
such materials, and of its influence on learning. For example, in the case of 
coordinate geometry in two dimensions, drawings on paper or a graphic calculator 
may serve the need of direct visual support for conceptual construction. However, in 
three dimensions, the direct experience of displacement in space of mathematical 
“objects” like straight lines and planes can be provided only by three-dimensional 
artefacts. This study investigates students’ ways of working with such materials. We 
also give some introductory remarks on artefacts in mathematics education. 

An artefact may be considered generally as any human creation, such as physical 
tools, production schemes, language or skills. Artefacts used for supporting learning, 
such as concrete materials designed for educational use, are ‘secondary’ as compared 
to ‘primary’ artefacts used directly in the production (Wartofsky, 1979). To make an 
artefact an ‘instrument’, for example for learning, it is necessary for the user to 
develop ‘utilisation schemes’, i.e. ways to use the artefact (see e.g. Strässer, 2004).  

The focus of this paper is on how students interact with concrete materials used in 
mathematics education. Such artefacts may be classified according to different kinds 
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of criteria. Having the purpose of design in mind, concrete materials used in school 
are common tools or educational materials (Szendrei, 1996), where the former are 
everyday tools used in society for different purposes (such as matches or coins), in 
contrast to the latter being designed with the particular aim to be used in an 
educational context as an aid for learning (e.g. Cuisinaire rods). With regard to the 
character of the artefact itself, we distinguish between static, dynamic, and responsive 
artefacts. Examples of static artefacts are Cuisinaire rods and geoboards. Such 
artefacts can be manipulated but do not change or give any feedback to the user. An 
artefact is responsive if it has a mechanism to produce an output to the user’s 
deliberate input request, e.g. a calculator. In a dynamic artefact, by a series of input 
responses a dynamic sequence evolves under the guidance of the user, as for example 
constructions in a dynamic geometry software by the use of ‘drag mode’. 

From the point of view of the utilisation scheme, a static artefact is open: it is up to 
the user to decide what to do with it. With a ball a child can play but also perform 
measurements to find its volume. For educational use the utilisation scheme must be 
constructed, or learnt by instruction. As a consequence, the didactic potential is also 
open. In contrast, a responsive artefact is more or less closed: when the user has 
given the input in a prescribed way, how the output is produced is out of his/her 
control. By combining open features of a static and closed capabilities of a responsive 
artefact, a dynamic artefact allows didactic activities of a guided discovery type. 

In an overview of research about the ‘effectiveness’ of concrete materials in mathe-
matics education, Sowell (1989) concluded that such materials may have a positive 
effect on learning and attitudes towards mathematics through long term use, provided 
that their use is properly handled by knowledgeable teachers (see also Suydam and 
Higgins, 1977; Thompson and Lambdin, 1994; Hall, 1998). However, it is also 
reported from seemingly well designed studies that no significant gain was found by 
the use of manipulatives (e.g. Resnick & Omansson, 1987; Bulton-Lewis et al., 
1997). For some types of materials these results have been explained by a Procedural 
Analogy Theory, using an index to measure “the degree of isomorphism between the 
embodiment procedure and the symbolic procedure” (Hall, 1991, p. 122). For these 
types of artefacts, the index may measure what Szendrei (1996, p. 429) calls the 
“distance between concrete material and mathematical concept”. Such a quantitative 
index, however, does not take into account the place of the activities within the 
curriculum and educational setting, the mathematical ‘milieu’, or the variation of 
utilisation schemes used by different students, even its design allows some flexibility. 
 
An empirical study 
The participants in our study were second year students in the science programme of 
upper secondary school in Sweden. They were familiar working with straight lines in 
two dimensions. In particular, they knew that the equation, y = kx + m , determines a 
straight line, where k = ∆y /∆x  is the slope. They knew how to interpret the slope 
geometrically, and knew how to calculate the slope from given coordinates.  
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Six volunteering students formed two groups with three participants in each. In 
Group I there were three girls (here called Anita, Beata and Cilla) and in Group II 
one girl and two boys (here called Anna, Bo and Caj). The students had a model of a 
three-dimensional space available, made in the shape of a cuboid (see figure below). 
Four of its sides were made of a mesh of steel and the two other sides (top and 
bottom) were empty. The model was 16 squares wide, 20 squares deep and 27 
squares high. Each square had sides of approximately two centimetres and the 
interior of the model was empty. 

The students were engaged in a problem solving activity, designed for the transition 
from two- to three-dimensional coordinate geometry, working with a plane and 
straight lines in three-dimensional space. The focus of the study was to investigate  
• to what extent students interact with the model; 
• what students do when they interact with the model; 
• how the interactions influence the solution processes. 
The working sessions with the two groups were videotaped and the tape subsequently 
transcribed for the analysis. Each group had about one hour to work with the tasks.   

The tasks 
The purpose of the first task was twofold: to make the students 
acquainted with the model and begin to develop utilisation 
schemes, and to see how they would handle point descriptions 
in three dimensions. Three points were marked in the model, 
each located on an individual vertical edge. The task was to find 
a point, located on the remaining vertical edge, on the plane 
determined by the three given points. The students were also 
asked to describe, orally to a non-present person, the location of 
this point, with and without such a model available. 

In the second task a straight line determined by two given points, located on two 
opposite sides of the model. The students had opportunity to visualise (a part of) this 
line, by connecting the given points with a piece of string. They were asked to 
identify some points on this line, with at least one point located outside the model. 
The tutor1 introduced a coordinate system in the model, by placing three wooden 
sticks along three edges to represent the coordinate axes, marked as the x-, y- and z-
axis. The points given in coordinate form were )12 ,0 ,7( and )20 ,16 ,15( . In addition, 
the students were asked to decide which of five given points were on the line. 

To analyse the second task, consider a straight line L and a point ),,( 000 zyx on this 
line. To move from this point to another point on the line involves a movement in all 
three directions, as described by the formula ),,(),,(: 000 zzyyxxzyxL ∆+∆+∆+= . 
We may interpret the movement as a move in one direction at a time, for example x∆  

                                                 
1 The tutor at the sessions was the presenting author of this paper. The group of students were most of the 
time by themselves, the tutor making only short visits to see how work was proceeding. 
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steps in the x-direction followed by y∆  and ∆z  steps in the y- and z-directions, 
respectively. The model supports this interpretation, as the students are able to look at 
the line through the xz-plane and the yz-plane, and by this also see the projection of 
the line on these planes. However, since the students have not been working in school 
with straight lines in dimensions higher than two, we can’t expect them to use the 
symbolic representation of the line given above. Considering their background know-
ledge, they may try to calculate a slope. Here they have to realise the fact that a three-
dimensional line has different slopes in different directions. The model may support 
the students to calculate two slopes, one that they can visualise in the xz-plane and 
one in yz-plane, kx and ky, respectively. For the given line these are  kx =1 and ky =0.5. 
With these, the students could be able to determine the coordinates for an arbitrary 
point on the given line, using ∆z = kx∆x and ∆z = ky∆y.  

The model also supports a direct three-dimensional interpretation of representing the 
movement from one of the two points to the other in terms of a vector (∆x,∆y,∆z). 
Just by counting squares they can determine 8=∆x , 16=∆y and 8=∆z . Further, 
using proportionality, the may scale )8 ,16 ,8(  down to )1 ,2 ,1( , which they may relate 
to the model, and may further be able to combine several vectors )1 ,2 ,1(  to reach 
new points. In this case, they are essentially working with the line in parametric form, 

)1 ,2 ,1(),,(),,(: 000 tzyxzyxL += . 

Working with the plane 
During the first task, Group I used much time to read and look at the instructions, 
before any attempt was made to interact with the model. It was apparent that the task 
and/or the concept of a plane seemed unclear to the students. Then Beata points at the 
model, explaining how the plane must be situated and where the fourth point must be. 
This is the start to a more intense interactivity with the model by all members of the 
group, and Beata is counting units on the grid model by touching it with the fingers: 

Beata: …leaning this much on this side it must lean the same on that side? Or 
what do you say?..1, 2, 3, 4, … 

Anita goes on and does the counting to finally mark the point, Cilla still looking at 
the definition of a plane in the text, seemingly unsure about what a plane is. Then 
they are looking back at the model and end their solution process: 

Anita: Yes but it should be like that … it is the same difference here [referring to 
their counting] 

The group spends more time for the task of explaining to a non-present person where 
the fourth point is. During this process there is much conversation about how to talk 
to that person, sometimes using fingers to count on the model, two of the girls still 
unsure about the concept of a plane. Anita wants to use a string between the points to 
be sure, and stands up to put it there but they decide it is not necessary. When they try 
to explain to a person who does not have the model available, Beata says: 

Beata: It is difficult when you don’t have this model. 
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They are looking for appropriate ways to describe it, using words like net, rectangle, 
cube, and so on, giving the number of units to count. During this part of the session 
there is almost no interaction with the model.  

The students in Group II spend only a very short time reading the problem text. Caj 
starts looking at the model while the others are reading, then counts on the vertical 
axes to finally hold a finger at a point indicating his solution, and goes on to explain 
his thinking. Bo then takes a sheet of A4 paper holding it inside the model to explain 
what a plane is, indicating that Caj has not found the correct point. The students again 
look in their papers, and Bo holds his sheet of paper for demonstration: 

Bo: .. it is leaning like this… 
When Anna starts talking about the lines that she can ‘see’ between the points, Caj 
asks for some sticks to insert in the model. The tutor supplies a piece of string, which 
Anna and Bo put into the model between two points (P and Q) on one side, and 
between two points across the diagonal (Q and R). Bo then holds a string from P 
towards the fourth axis, above the string between Q and R until it touches this string. 
This way the fourth point is found on that axis. Anna counts grid units in the model, 
using her fingers, to describe where the fourth point is located in relation to the given 
points, in order to answer the task of explaining the solution to a non-present person. 
The students do not complete the task of explaining without the model available. 

Working with the line 
When the tutor is introducing the coordinate axes, Group I has some questions on 
how it works. Beata is explaining to the others, as regards for example the order of 
the variables in the coordinate notation. The students stand up around the model and 
count (slowly) with their fingers on the grid to mark the two given points. The tutor 
offers the string, which they use to mark the line between the two points. While all 
focus on the model to understand the task to find a point on the line outside it, Beata 
introduces the strategy of thinking about how much the line continues for each x-step, 
pointing with her hand. During a rather silent period all girls are looking at the 
model, but when Beata starts writing on the paper the others also look at her paper. 

Cilla : Okay, shall we describe points on this line then?  
Beata : ... it must lie outside the model... at least one.  
Cilla : So the line that continues here, then? [she makes an expansion of the line 

with her hand.]  
Beata: Yes... Shall we see how much it continues in that direction [she points in 

negative x direction] for each x-step?  
Here Beata looks at the y and the z, one at a time, and tries to find out how much they 
change for each change of the x coordinate. Later in the discussion she goes on: 

Beata: Is it possible to assume that... x equals... in a way so that we can write down 
a formula? From here to there it was seven, [location of the point (7,0,12)] x1 is 
equal to seven here... then y equals [inaudible]  

[Beata writes on a sheet of paper: x1 = 7  x2 = 15  y1 = 0  y2 = 16  z1 = 12  z2 = 20]  
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Cilla: Mmmm [agrees]  
Beata: So it has moved eight steps here... There it has moved sixteen steps 

[inaudible] ... z is proportional to x or they are the same. 
Anita: And y is twice as much. 

When Beata looks at the model the other girls still look at what she has written on the 
paper, with the new point (8, 2, 13). It is Beata who is intentionally interacting with 
the model, as is observed when she is turning it to look from another angle, causing 
the others to look up from the paper. Beata is pointing in the model to explain her 
reasoning. At this occasion the discussion touches the equation of a line in two 
dimensions, but they decide to leave that since an equation is not asked for. However, 
they use the idea of the proportional relation between the variables of the equation, 
later writing down yx ∆=∆ 2  (but using the correct relation in their reasoning). When 
checking up the change for z, Beata puts the model with a vertical face down. At 
some few occasions during the rest of the session, the students look/point at the 
model but most of the time focus is on what is written on the paper. During the last 
five minutes, completing the second task, the girls pay no attention at all to the 
model, reasoning only numerically from the given coordinates. 

The Group II students seem to have no problem to understand the coordinate system 
in three dimensions, placing the two given points and fixing a string between them to 
indicate the line. After being silent for a while, looking at the model, Anna suggests: 

Anna: Shouldn’t we be able to calculate some k-value? [She asks the boys.] 
Bo: There is one slope in one direction and another in another direction. [Bo 

pointing with his hand in two different directions.] 
Anna: But one should… 
Caj: You are thinking two dimensions. [And Caj suggests:] 
Caj: You may see it like two straight lines, one line here…[pointing at a side of the 

model] 
So far, the interaction with the model is just pointing out directions. But, to calculate 
the slopes, Anna and Caj now visually project the point at the plane y=16 to the plane 
y=0. When doing that they immediately determine the slope to be 1, interacting with 
the model by counting, pointing and marking a point. 

Caj: Now we take a line between these [(7,0,12) and the projected one at (15,0,20)] 
Anna: … [visualising the slope with a pen] The k-value is one, one can see that. 

To calculate the slope in the yz-plane they just count2 grid units in the z- and y-
direction respectively, and determine the slope to be 0.5.3 There is a lot of pointing 
and looking at the model. Anna, pointing with her pen to the interior of the model, 
suggests that they should have a string through the model and just count to see what 
point it is. Instead they start looking for a formula to solve the problem, working with 

                                                 
2 Bo and Caj share the work in interacting with the model by counting one direction each simultaneously. 
3 With this information of the two slopes the students could have determined other points on the line. 
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an expression of the type z=k1x+k2y+m, where k1=1 and k2=0.5. They find4 that z=x+5 
for y=0 and arrive at z=0.5y+x+5. Choosing z=15 (between 12 and 20 for the given 
points) they try to decide x and y from the formula5 but arrive at a strange result6. 
Then after one minute of silence Anna says: 

Anna: But wait a minute, then it’s minus …this point we have [points at the given 
point (7,0,12)] this is 7 0 12 isn’t it? 

Bo: Yes we got one point. 
Anna: Yes, y decreases so it will be –0.5, x also decreases …6,0.5, 11 it is. Then 

we have a point on the line outside of the model…then we just add here when x 
is 8, we get.. 

Bo: Yes, that’s also one way to solve it. It doesn’t matter how we solve it, or? Then 
we could have continued the string like that from the start and just looked. 

When working with the final task, i.e. decide if the five given points are on the line, 
Anna discovers their mistake when she looks at the given coordinates. 

Anna: But here you have…x is 15…then x has increased to 23… […] then it 
increases by 8. 

Caj: So x is equal to z minus 5…that works, doesn’t it? 
Anna: y is to…y is to…but it isn’t correct…then we did wrong here, y must 

decrease by 2. 
Discussing their previous calculations, Anna has understood their mistake and 
explains to the others by referring to the model, using a pen to visualise the slope, 
how the steps must be counted. After that she corrects their answers for the task of 
finding some points on the line to be (6, -2, 11) and (8, 2, 13). By these explanations, 
Bo and Caj also realise how things work:  

Anna: 8 and 2 it is the same…yes, and then it is correct that (23, 32, 28) is on… 
Bo: One need to look only at the relationships between… 
Anna: Yes, it is the relationships between… 

Subsequently, they easily solve the rest of the task only by reasoning from the 
increments of the coordinates, with no interaction at all with the model. 

Analysis 
The artefact used in this study is static in the classification above. The students were 
not instructed by the tutor how to use it for their problem solving session, and thus 
had to develop their own utilisation schemes. By the grid construction it was ‘natural’ 
to count the grid units as a way to describe point locations on the artefact, a 
utilisation scheme that all students used. Other mathematical objects, such as the 
plane and the line involved in the tasks, had to be inserted in the model by an 
intentional act. Here a conceptual basis was observed to interfere with the model 
interaction, in the case of the plane as a problem to understand the task for Group I – 
                                                 
4 Anna is here using the string inserted the model to continue the projected line in the xz-plane until it 
intersects the z-axis. 
5 They see this formula as the equation of the line, by a generalisation from the two dimensional case. 
6 Anna is saying, for example: But there are two k-values, that is what is so stupid. 
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the development of utilisation schemes was constrained by this weak conceptual 
grasp. For Group II the concept of a plane was visualised by one of the students 
inserting a paper into the interior of the model, and the image of a plane was also 
present in the solution process of task 1 using strings to represent crossing lines on 
the plane. Here the static artefact opened up for creativity in developing utilisation 
schemes. The idea of a straight line in a coordinate system was already well known in 
two dimensions from the students’ earlier studies, and there was no conceptual 
problem with the line, as observed from the interactivity with the model, both groups 
taking the advantage of inserting the piece of string available to represent lines.  

The student-artefact interactivity differed considerably between the two groups, even 
some commonalities can be observed. In the first task, Group I students were sitting 
much longer reading the problem texts before turning their attention to the model, as 
compared to Group II. One explanation to this may be the observed weak conceptual 
idea of what a plane is, without which the static model (not including a plane) may 
not seem to offer much help. However, the first solution attempts were similar 
between the groups, counting with the fingers touching the grid units on the model. In 
both cases one of the students presented interactively with the model this way of 
looking at the problem, without first discussing it with the peers. This way of using 
the model to share or discuss ideas with peers, could be observed throughout the 
working sessions. It was also stated explicitly by Beata that it was difficult to explain 
the solution without the model available.  

After the solution to task 1 was found, there was in Group I not much interactivity 
with the model, and the girls spent much time with no attention at all to the model 
discussing how to present the solution to a non-present person. However, the students 
in Group II developed an extended utilisation scheme with the artefact, after showing 
visually, using a sheet of paper to represent the plane, that the first proposed solution 
could not be correct. Instead they inserted strings in the model for lines between the 
given points, and this way constructed (approximately) the target point of the 
problem, by manipulating the artefact. Then again, to describe the location of the 
point, the ‘old’ utilisation scheme of ‘finger counting’ the grid units was used. This 
interactivity with the model also seemed to function as a post-validation of the 
solution. 

During the work with the line, all students in Group I interacted with the artefact in 
the beginning, standing up around the model to mark the given points and line. 
However, the solution process was dominated by one of the students, Beata, who 
suggested to look at how the line continues with each ‘x-step’. She proposed this idea 
after focussing her eyes on the model, which may suggest that it was visually 
influenced by it. The participation of the other students appeared to be only in 
response to Beata’s activity. It was she who was seen to interact actively with the 
model, pointing to explain her reasoning, turning it or putting another face down on 
the table, to look from another angle. When the proportional change of coordinates 
had been seen as a way to solve the problem, the interactivity with the model stopped 
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completely, and the students worked only with pen and paper for five minutes 
without looking at it. 

Group II developed a more rich utilisation scheme with the static artefact also when 
working with the line task. By focussed interactivity with the model from all students 
in the group, the search for a k-value (slope) for the line, originated from their 
knowledge in the two-dimensional case, the idea of a projection of the line (segment) 
onto the coordinate planes was followed up and completed correctly by instrumental 
work with the model. To visualise the projected line segments a pen, held close to the 
faces of the model, was used. However, by over-generalising from the two-
dimensional case, they directed their work towards finding an equation for the line, 
using the two k-values and the intercept of one axis, and from a chosen z-value use 
this equation to calculate the other coordinates. This work also led to more 
interactivity with the model, but after a ‘strange’ result from their algebra they 
seemed to abandon the equation7 and look at the problem text again. It was then that 
the idea to look only at the increments of the coordinates came to Anna, confirmed 
also by Caj’s reference to the model for the relation z=x+5. This new focus on the 
coordinates made Anna realise they had made a mistake with the change of the y-
coordinate. She explained to the others, by showing on the model with a pen to 
visualise the slope, how to count the steps. Again, similar to Group I, they now 
solved the last part of the task by considering only the increments of the coordinates, 
without referring any more to the model in what they were saying or doing. 
 
Discussion and conclusions 
It is difficult to trace the genesis of the solution that the students found to the line 
problem. The work started by looking at and interacting with the model, in different 
ways, but the final insight seems to have come when they looked only at the given 
coordinates for different points on the line. It is possible that with a focus from the 
start on the numerical relations between and within the coordinates, the students 
would have solved the problem also with less attention to the model. However, it 
seems likely from the analysis of this problem solving session, especially for Group 
II, that their interactivity with the static artefact played an important role in building 
up a sense of understanding or control of the problem situation, through the images 
evoked by the focus on different parts and aspects of the model. Now, the exact 
coordinates for points not located on the grid faces of the model are impossible to 
find by only looking at the static model: for this a logical analysis is needed. The 
analysis with the projections, as done by the students in Group II, allowed this, but 
was not used for this purpose. 
It was also observed that the model was much used as a vehicle for communication 
when a student wanted to explain some idea to the other students in the group. After 
working with the model, mentally or physically, this is only to be expected. The fact 

                                                 
7 Anna seems to feel more confident with the model, saying at this occasion: I propose we take a string and 
drag it straight through. 
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that the students were sitting at three different sides of the table where the model was 
placed should also be noted. The coordinate system was thus seen from different 
orientations, which may have influenced the effect that the visualisation process had 
on the understanding of projections and change of coordinates along the line.   
It can be observed how the knowledge students bring into the problem situation is, at 
least partly, guiding the interactivity with the artefact. Working with the first task on 
the plane, two students in Group I showed uncertainty about what a plane is, and they 
showed no intention to interact with the model on this task, possibly because they 
then did not know how to take advantage of the model, until the third student had 
demonstrated how the plane must be located. In contrast, the students in Group II did 
not hesitate to take advantage of the model, also to visualise what a plane is, and their 
solution was a direct result of the interactivity with the model. Also, during the work 
with the line, Group II directed their efforts to find the equation for the line and use 
that to solve the problem, possibly because this was how they had worked in the two-
dimensional case they were familiar with. Since the static artefact is didactically 
open, it allows students to (try to) develop utilisation schemes to pursue their ideas of 
how to solve the problem, using the model at hand. 
In this case study we have described some patterns of interactivity with a static 
artefact. Not only the model itself but also the educational setting and its place in the 
curriculum, and the utilisation schemes developed by the students, guide its didactic 
potential. For fruitful utilisation schemes to develop, appropriate pre-knowledge 
structures in students need to be activated. When students integrate such schemes 
with visual, numerical and algebraic modes of reasoning, and all students in a group 
work setting are actively involved in the interactivitity with the static artefact, it has a 
didactic potential to support a mathematical discussion directed towards understan-
ding. Another strength of having the artefact available is that it supports, by the 
visualisation it affords, the validation phase of the solution process. 
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Abstract: The purpose of this paper is to analyse a phenomenon that is observed in 
the dynamic process of teaching and learning of graph functions in high school1: the 
teacher uses expressions that suggest, among other ideas, (1) orientation metaphors, 
such as “the abscise axis is horizontal”, (2) fictive motion, such as "the graph of a 
function can be considered as the trace of a point that moves over the graph", (3) 
ontological metaphors and (4) conceptual blendings. 

Keywords: metaphors, graph, function 

 

1 INTRODUCTION 
In this research we have tried to answer the following four questions: What type of 
metaphors does the teacher use to explain the graphic representation of functions in 
the high school? Is the teacher aware of the use he/she has made of metaphors in 
his/her speech and to what extent does he/she monitor them? What effect do these 
metaphors have on students? What is the role played by metaphors in the negotiation 
of meaning? 

This paper is divided into five sections. The first section contains an introduction and 
comments on the research problem. The second section reviews the research on 
metaphor and presents the theoretical frameworks of embodied cognition. The third 
section presents the study and its methodology. The fourth section contains the data 
analysis and our answer to the four questions that are the goal of the research. Finally, 
in section five, we offer some conclusions. 
2. BACKGROUND 
In recent years, several authors (e.g., Font & Acevedo 2003; Johnson, 1987; Lakoff & 
Núñez, 2000; Leino & Drakenberg, 1993; Núñez, 2000, Presmeg, 1992, 1997; Sfard, 
1994, 1997) have pointed out the important role played by metaphors in the learning 
and teaching of mathematics. 

We start by considering metaphor as an understanding of one domain in terms of 
another. According to Lakoff and Núñez (2000), metaphors generate a conceptual 
relationship between a source domain and a target domain by mapping and preserving 
                                                           
1 Bachillerato in Spain 
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inferences from the source to the target domain. Because metaphors link different 
senses, they are essential for people in building meanings for mathematical entities 
"…a large number of the most basic, as well as the most sophisticated, mathematical 
ideas are metaphorical in nature" (Lakoff and Núñez p. 364). However, not all 
conceptual mappings draw from direct physical experience, or are concerned with the 
manipulation of physical objects. We are also aware that only some aspects of the 
source domain are revealed by a metaphor and in general, we do not know which 
aspects on the source domain are mapped by the students. 

Although conceptual metaphor is directly related to the person building it, in 
classrooms, teachers use a metaphor, consciously or otherwise, to try to explain a 
mathematical subject to students more clearly, i.e., in order to facilitate students’ 
understanding. We investigate the implications of this practice for students’ 
understanding of mathematics. 

3 METHODOLOGY 
The research presented here is a theoretical reflection based on analysis of various 
teaching processes for the graphic representation of functions in the Spanish high 
school diploma. The classroom episodes and interviews mentioned in this paper are 
part of the field material used as the basis for the reflections and results shown here.  

The information was obtained at the place of work of the subjects researched. The 
teachers who participated in this research did so voluntarily and gave their specific 
consent to interference with their teaching work (class observations, video recording, 
analysis of working materials, etc.). The students participated at the teacher's request. 
The choice of the teachers and students recorded on video was not made based on any 
statistical criterion. Only their willingness to co-operate and to be recorded was taken 
into consideration. 

In this paper, we are going to look especially at the recording of the classroom 
sessions of teacher A. Two other teachers (B and C) are also referred to, as is the 
interview, recorded on video, with a student of teacher C, who we will refer to as 
student D. 

In order to analyse the teachers' teaching processes effectively, we need written texts. 
For this reason, we videotaped his lessons and transcribed them. We organised the 
transcription into three columns. These were (1) transcriptions of the teacher’s and 
students’ oral discourse, (2) The blackboard and (3) comments on the teacher’s 
gestures. Our focus was on the teacher’s discourse and practice, so the students’ 
discourse and practice2 appears only when interacting with the teacher. 

                                                           
2 We feel that mathematics learning means becoming able to carry out a practice, and above all, to 
perform a discursive reflection on it that would be recognised as mathematical by expert 
interlocutors. From this perspective, we see the teacher's speech as a component of his professional 
practice. The objective of this practice is to generate a type of practice within the student, and above 
all, a discursive reflection on it, which can be considered as mathematics.  
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Once we had these written texts, we needed to separate them into analysis units. One 
possible way to perform this separation was to take the construct “didactic 
configuration” as the basic analysis unit. Godino, Contreras and Font (2004) consider 
that a didactic configuration – hereinafter referred to as a DC – is established by the 
teacher-student interactions based around a mathematical task. 

The teaching process for a mathematical subject or contents takes place in a 
timeframe by means of a sequence of didactic configurations. Although the basic 
criterion for determining a DC is the performing of a task, grouping in didactic 
configurations is flexible and at the researcher's discretion. 

Analysis of the didactic configurations implemented in a teaching process is 
facilitated if we have some theoretical models for use as reference. Godino, Contreras 
and Font (2004) mention four types of theoretical configurations that can play this 
role and which are designated as teacher-centred, adidactic, personal and dialogue-
based configurations. The empirical didactic configurations that arise in the teaching 
processes carried out are indeed close to one of these four theoretical configurations.3.  

Division of the classroom session into didactic configurations enables subsequent 
macroscopic analysis of a wide range of didactic configurations, while finer 
(microscopic) analysis will be carried out mainly on a much smaller number of these 
didactic configurations. In our research, after defining a DC, we focused our analysis 
on the phenomena related to the use of metaphors seen in it. 

4 DATA ANALYSIS  
In this section, we will perform the data analysis and answer the four questions that 
are the objective of the research 
4.1 Reply to the first three questions 
As far as the first question is concerned, the use of orientation metaphors can be seen 
in the teachers' explanations. For example, we can see that teacher A is using 
“horizontal” instead of saying “parallel to the abscises axis”, “horizontal axis” instead 
of “abscises axis” and “vertical axis” instead of “ordinates axis”. This is stressed not 
only in his speech, but also in his gestures. Only in one DC did the teacher fail to 
identify the ordinates axis as the vertical axis and the abscises axis as the horizontal 
axis although interestingly, the text book never made this identification. 
Teacher A: …in x =0 shows a minimum and the derivative in x = o is zero as we 
could expect, because now the tangent line is horizontal…[ While he says this, he 
gestures with his hands, indicating the horizontal position of the tangent line on the 
graph on the blackboard] 

                                                           
3 The lack of adidactic DCs and the presence of some dialogue-based DCs in the classroom sessions 
recorded on video, seems to suggest that they are quite similar to the traditional mathematical 
classroom - featuring one blackboard, one teacher as the focus of discussion and twenty to thirty 
silent students which seems to belong to history. 
 

Working Group 1

84 CERME 4 (2005)



 

We can find also metaphors which facilitate students’ understanding of the idea that 
"the graph of a function can be considered as the trace of a point that moves over the 
graph".    

Teacher A: …if before 0 is increasing, if after 0 is increasing, if before 0 and after 0 
is increasing we have an inflexion point. If before 0 is increasing and after 0 is 
decreasing, it’s a maximum. If before 0 is decreasing and after 0 is increasing, a 
minimum. [Gesturing comes along these comments in the graph of the blackboard]. 

In the teacher’s discourse, we find a powerful metaphor, the fictive motion (Lakoff 
and Núnez 2000). He, teacher A, uses expressions like “before 0” and “after 0” in 
such a way that the point 0 is understood as a location determined on a path 
(function). According to the authors, this is ubiquitous in mathematical thought (p. 
38). There is a spatial organisation, suggesting an origin (from), a path (where the 
function goes) and a goal (to, until). The essential elements in this schema: are a 
trajectory that moves, a route from the source to the goal, the position of the 
trajectory at a given time. 

Font (2000) and Bolite Frant et al. (2004) found that when teachers explained a graph 
of a curve as the trajectory of a point that moves, the students thought point A would 
be the same after being moved, as when a person or a car moves from one place to 
another in space, they are still the same person or car. Here we see that for the 
teacher, only part of a source domain from daily life (things moving in space) was 
mapped, while the students were mapping a bigger scene. In other words, teacher has 
a clear idea of what features were to be mapped while the students do not. 

Another type of metaphor observed are ontological - which enable events, activities, 
emotions, ideas, etc. to be considered as if they were entities (objects, things, etc.) - 
and metaphorical blends. For example, a mixture of ontological and dynamic 
metaphors can be seen in the following transcription from teacher A. 

Teacher A: One of the things we study to representing the graph of a function is the 
behavior at the infinity. What does the function do when x tends to infinity? What 
does the graphic of a function do when x tends to infinity? It could do this, going 
towards positive infinity [while drawing the left-hand graph]. It could do this, going 
towards negative infinity [he draws the centre graph on the previous graph]. It could 
also increase and stabilise until a certain number, like this [he draws the right-hand 
graph over the graph in the centre. In the three graphs the teacher moves his hand, 
making movements that are a continuation of the part of the graph drawn, 
suggesting an indefinite continuation].  

In order to answer the second question, a semi-structured interview with the teachers 
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took place, which was also video recorded. The teachers' level of awareness of their 
use of dynamic metaphors and their possible effect on students' understanding differs 
from teacher to teacher. The teacher who gave the class we have used so far, teacher 
A, was more aware than others. However, Font and Acevedo (2003) consider the case 
of teacher B, and it can be seen that he is not aware that he uses dynamic metaphors 
and, therefore does not control them. As a consequence of the interviewer's questions, 
teacher B realises that he uses them, but feels that this use facilitates understanding 
and does not feel that the possible difficulties that they may cause his students are 
important. In fact, he feels that the use of metaphors does not lead to any type of 
conceptual error among his students. 

In order to answer the third question, various students were interviewed and recorded 
on video, questionnaires were also given to some students and some of the students' 
productions during the teaching process (for example, examinations) were analysed. 
A significant example is the case of one of teacher C’s students, who had a good 
command of the graphic representation of functions. This student was asked to 
comment verbally on the prior steps (domain; cuts with axes; asymptotes and 
behaviour at the infinity; study of maximums, minimums, increasing or decreasing 
intervals; study of inflection points and concavity and convexity intervals) and 
construction of the graph in the examination. Both the graph and the steps prior to his 
examination answer were correct.  

While no metaphor was observed in his written answer, they were omnipresent in his 
explanation of how he had constructed the graph. For example, in response to the 
question "Can you now tell me when the function will be increasing and when it will 
be decreasing?" the student correctly answered by pointing to the intervals and saying 
that “it increases here because it goes up and decreases here because it goes down.”) 

Interviewer: Can you now tell me when the function will be increasing and when it 
will be decreasing? [While putting the paper on which the student has drawn the 
graph of the function in its horizontal position]. 

Student D: [Hesitates for a few seconds] I don't understand, do you mean that the 
axes have changed? 

Interviewer: No, the axes haven't changed, they're still the same. 

Student D: This one is decreasing because it is going down and this one is 
increasing because it is going up, this other one is decreasing because it is going 
down and this one is increasing because it is going up. [He hesitates for a few 
seconds and points to the part of the curve shown with a thin arrow as increasing 
and that shown with a thick arrow as decreasing] 
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4.2 Metaphor and Meaning Negotiation  

We now see an example of the role played by metaphors in the negotiation of 
meanings, which is understood as the connection between personal and institutional 
meanings in a teaching process. 

The division of teacher A's classroom session into DCs enabled one to be determined 
which begins when the teacher suggests the task of calculating the domain of a 
function and ends when the teacher proposes two new tasks. (First he tells the 
students to solve an activity based on calculating domains at home, and then suggests 
finding the points where a function cuts across the axes in class). In this DC, teacher 
A wanted to recall the “domain of a function” and the techniques used to determine 
it, which had been studied beforehand, and he used three examples. This is a teacher-
centred type DC with an attempt by the teacher to make it dialogue-based. 

Transcripts of the DC  Blackboard Notes 

T: So let's start with the domain. Remember that the 
domain of a function is the set of values of the 
independent variable that has an image. .….. Or to 
put it another way; they are the values for which I can 
find the image, they are the x where I can calculate 
the image. For example, look at this function 

( ) )1/(1 += xxf . The domain of this function consists 
of the set of numbers for which when I substitute the 
x for these numbers I can carry out this entire 
calculation, that is, I can find the image. 

T: Can this always be done? Except for one number, 
which one? 

 
 
 
 
 
 
 
 
 

( ) )1/(1 += xxf
 
 
 
 
 
 
 
 

 

 

He points to the x 
of the formula. 

He moves his 
hand around the 
fraction 1/(x+1). 
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S: -1 

T: Then the domain is real numbers except for -1, 
that is, you can find an image for any number except 
for -1 

T: There are more complicated functions, such as the 
neperian logarithm of x, for example.  

T: What is the domain of this function? Think about 
the graph and from there.... Tell me. 

S: From zero to positive infinity. 

T. Yes, from zero towards positive infinity is the 
domain, because logarithms of negative numbers do 
not exist, the logarithm of minus one does not exist. 
Is zero included or not included?  

S: No 

T: No …very good... So the domain of this function 
is from zero towards positive infinity. Remember that 
the graph of this function, did something like this,.. 
The graph of this function did something like this, 
and the domain is from zero towards positive infinity. 

T. Any doubts? 

T: A final example, the square root of x, What is the 
domain of this function? ….Come on!!  

S:…(inaudible, but it is an incorrect answer) 

T: Ah yes! 

T: Except for the negatives … because the square 
root of a negative number does not exist, we could 
also say the same real numbers except for the 
negatives, easier, all the positive numbers, we can put 
it like that, easier, we can express it in the form of an 
interval, from zero to infinity, zero is included this 
time, it is included. 

 
 
 
 
 
 

( ) xxf ln=   
 
 
 
 
D(f) = 0,+ �) 

 

 
 
 
 
 
 
 
D(f)=(0,+�) 
 
 
 
 
 

xxf =)(  
 
 
 
 
 
 
 
 
 
D(f)=[0,+ �) 

 

 

Teacher writes on 
the blackboard 
“D(f)=0,+�)”. He 
points to zero 
with the fingers. 

Teacher writes on 
the board “(“ 
before the zero 

The teacher 
draws the graph 
and points to it. 
with the hand 

The teacher 
gestures with his 
hands following 
the line of the 
graph. Then he 
points to the zero, 
and moves it 
towards the right 
to represent the 
interval (0,+ �). 

 

First the teacher introduces the formulation “the domain is the set of values of the 
independent variable that has an image”. Then he continues: “they are the values 
from which I can find the image”. The second remark is more functional in finding 
the domain than the first; since it facilitates a “language game” that allows a common 
meaning about which the domain in question is. The characteristics of this “language 
game” for the function f(x)=1/(x+1) are: 1) Introduction of a generic element. The 
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teacher introduces the element x which allows operation of the function formula 
according to “when I substitute the x (his finger is on the x in the given formula)  for 
these numbers I can carry out this entire calculation (with his hands surrounding the 
fraction 1/(x+1)), that is, I can find the image”. Then he waits for the students to 
mentally find the values for which the operations indicated in the formula of the 
function cannot be carried out. 2) Agreement of the range of values of the generic 
element. The students raise some hypotheses about the domain until they came to an 
agreement that was accepted by all, including the teacher. Several students say “-1” 
and the teacher is satisfied with this answer. 

In the function f(x) = ln x, the same language game is reproduced, with certain 
differences. The first is that the generic element is a point in the negative part of the 
abscises axis. The teacher draws the graph of f(x) = ln x and waits for the students to 
mentally apply the following technique: (1), thinking of a negative point; (2) tracing a 
line perpendicular to the abscises axis passing through this point; (3) observing that 
this line does not cut the graph of the neperian logarithmic function and, (4) stating 
that this reasoning is valid for any negative point and also for a point in the origin 
(this technique was shown in a previous unit). The second difference is that, when the 
students answer “from zero to positive infinity” the teacher considers it to be  
ambiguous and decides to intervene, asking them if zero is a point of the domain; he 
then accepts the students’ answer that zero is not the domain. 

It is important to note that both answers is expressed in metaphorical terms. Students 
and teachers use the expression “from zero to positive infinity”. The students do so 
orally and the teacher adds a written expression (0,+�) and gestures towards the 
positive part of the abscises axis (moving his hand from the origin to the right. This is 
the metaphor that considers the semi-line number as a path with a source (start point) 
and a goal (positive infinity). 

The synchronism of dynamic language and hand movement allows students to 
understand the domain, a case of actual infinity, since it is an open interval, as the 
result of a movement that has a beginning but no end. According to Lakoff and Núñez 
(2000 p.158), we see this case of actual infinity as the result of a movement that has a 
beginning and no end, due to the fact that we metaphorically apply our knowledge of 
processes which have a beginning and an end to this type of process. This is what 
these authors call the BMI – the Basic Metaphor of Infinity. 

5 FINAL CONSIDERATIONS  

This paper revealed that conceptual metaphors are relevant tools for analysing and 
improved understanding of mathematics classroom discourse. In one way it is already 
embedded in theoretical concepts -e.g. the values above the origin (the ordinates axis) 
are positive. In the other, it is present in teacher’s explanation when for in order to 
facilitation purposes, in order to turn theoretical concepts into intuitive ones, he used 
metaphors that may relate directly to students’ daily experience - e.g. the vertical axis 
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as the ordinates axis. It is also present in the way students organise their knowledge –
e.g. of the Cartesian axis based on spatial orientation based on their bodies.  

We found that the use of several metaphors (orientational, fictive motion, ontology, 
and metaphorical blends) is present in both the teacher’s and students’ speech. This is 
inevitable and sometimes unconscious, but it is fundamental in building/talking 
mathematical objects.  

As well as a description in global terms, the graphic representation of functions also 
requires the introduction of local concepts such as increasing and decreasing at a 
point, etc. formulated precisely in static terms, using the notion of number sets. These 
local concepts are very difficult for high school students, and for this reason many 
teachers leave them in the background and prefer to use dynamic explanations, in 
which the use of dynamic metaphors is fundamental, which they consider more 
intuitive. Students' productions also show that the use of these metaphors in the 
teacher's speech has significant effects on students' understanding. 

 Metaphors, as seen here, also play an important role in negotiating meaning in 
classrooms, and we propose a model that takes the dynamic of the interplay of 
discourses into account. It is important to note that metaphors in classrooms may 
have two different directions. On the one hand, there are metaphors that teachers use 
in the belief that they are facilitating learning, and on the other there are students’ 
metaphors. 

The teachers’ source domain is mathematics and the target is daily life because they 
try to think of a common space to communicate with the students. However, the 
domain of daily life is not always the same for both, because the teacher is using only 
the part of the daily life concept that is mapped into the mathematical domain. 
Students usually have a larger daily life domain than that which is mapped and is not 
in the same mathematical teacher’s domain.  

The use of metaphors has its advantages and disadvantages. The teacher must 
therefore make a controlled use of them and must be aware of their importance in 
students’ personal objects. 
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METAPHORS AND GESTURES IN FRACTION TALK 
Laurie D. Edwards, St. Mary’s College of California, USA 

 

Abstract: Interviews about fraction with prospective elementary school teachers were 
analyzed in terms of the gestures and the unconscious metaphors that underlie their 
conceptions of fractions. The gestures were categorized using a modification of a 
scheme developed by linguist David McNeill, and also in terms of the specific 
mathematical context surrounding the students’ statements. Distinctive types of 
gestures were associated with these different contexts, reflecting the students’ actions 
while learning about, calculating with, and solving problems involving fractions. 

 

Keywords : metaphor, gesture, fractions, conceptual mapping. 
 

The theory of embodied cognition holds that thought and ideas are not abstract, 
transcendent entities, which contrast with the concrete physical experience, but rather 
that human cognition has developed within the constraints and capabilities that our 
biology brings to coping with the social and the physical world (Varela, Thompson & 
Rosch, 1991). Within this theory, the senses, linked to motor activity, are an essential 
aspect of cognition. As summarized by Varela, “Embodied entails the following: (1) 
cognition dependent upon the kinds of experience that come from having a body with 
sensorimotor capacities; and (2) individual sensorimotor capacities that are 
themselves embedded in a more encompassing biological and cultural 
context...[S]ensory and motor processes, perception and action, are fundamentally 
inseparable in lived cognition, and not merely contingently linked as input/output 
pairs” (Varela, 1999, p. 12).  This theory has philosophical and practical implications 
for mathematics education, because, traditionally, mathematics has been seen as the 
paradigm of abstract, disembodied reasoning, universally true and not contingent on 
the physical world. However, recent work in cognitive science has analyzed ways in 
which mathematical ideas are embodied (Lakoff & Núñez, 2000). Utilizing cognitive 
mechanisms such as unconscious metaphors, conceptual blends, and image schemas, 
human beings have constructed mathematical ideas, building on certain primitive 
“arithmetic” capabilities shared with other members of the animal kingdom (ibid.).  

 Recently, research into the relationship between physical gesture and language 
has added a new dimension to the embodied cognition paradigm. According to work 
in this area, human gestures form an integral part of language, thought and 
communication. Indeed, there is one school of thought that holds that gesture 
preceded and scaffolded speech in human evolution, and evidence from neuroscience 
indicates that the same areas of the brain are involved in the expressive use of gesture 
and oral language (Corballis, 1999). Recent research within psychology and 
mathematics education has looked at the role of gesture and embodiment in counting 

92 CERME 4 (2005)



 

(Alibali & diRusso, 1999), arithmetic problem solving (Goldin-Meadow, *), algebra 
and graphing (Nemirovsky, Tierney, & Wright, 1998; Reynolds & Reeve, 2002; 
Robutti & Arzarello, 2003), and differential equations (Rasmussen, *). Results from 
this research suggest that, in learning situations, gestures and speech can convey 
different kinds of information, and that a “mismatch” between gesture and speech can 
indicate a readiness to learn a new concept or procedure on the part of the student 
(Goldin-Meadow, ibid.), or a foreshadowing of a new concept on the part of the 
teacher (Rasmussen, *). In addition, gestures can “condense” features of the real 
world and support the construction of understanding within both traditional and 
technology-based mathematical representations (Nemirovsky, Tierney & Wright, 
1998; Robutti & Arzarello, 2003). 

The goal of the research described in this paper was to investigate the kinds of 
gestures found in students’ discourse about fractions, and to analyze both gesture and 
talk in order to describe the unconscious metaphors that give rise to these expressions. 
Fractions are a difficult topic for many children, and also for some pre-service 
teachers. As a starting point, the research aimed to collect a corpus of speech and 
gestures related to fractions, within an interview setting. The analysis of the 
metaphors and gestures found in this setting could then be used in further research 
into how fractions are learned and how better to teach them. 

Methodology 

The participants in the research were twelve female prospective elementary school 
teachers, approximately 20 years of age, enrolled in a required undergraduate 
mathematics course at a small liberal arts college. The students were interviewed in 
pairs by the author, in videotaped sessions lasting about 30 minutes. The students 
were asked the following questions: 
 How were you first introduced to the idea of fractions? 

 Do you remember anything that was particularly difficult about learning  

fractions? What about adding, subtracting, multiplying or dividing fractions? 

 Have you ever used fractions in everyday life, or in other classes? 

 How would you introduce fractions to children? 

 How would you define a fraction to children? 

They also worked together to solve five problems involving comparing, adding, 
subtracting, multiplying, and dividing fractions. 

Data Analysis 

The data analyzed in this report were taken from a total of three hours of interviews, 
during which time total of 86 gestures were displayed by the twelve students. The 
gestures were initially analyzed utilizing a classification scheme established by a 
linguist, David McNeill (1992). This scheme, which was developed utilizing a set of 
narratives (descriptive stories), did not fully distinguish the kinds of gestures 
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displayed by the students when they talked about a mathematical topic. Thus, the 
classification scheme was modified, and used to categorize all the gestures. A 
summary of the results of this classification will be presented here; for a full analysis, 
see Edwards (2002). 

Iconics 

The gestures displayed by the students fell into three of McNeill’s original categories: 
iconics, metaphorics, and deictics. Iconics are gestures that resemble their referent in 
the speech. An example from the fraction data is shown in Figure 1, where a student is 
talking about the physical materials (manipulatives) used when she first learned about 
fractions (the underlining indicates where the stroke, or most fully-formed, part of the 
gesture fell within the speech). 

 

 

Figure 1: “I think we did, like, just a stick or a rod…” 
 
The student’s hands are placed as if they were holding a long, narrow object, like the 
“stick” or “rod” referred to in her speech. 

 There was a second type of gesture displayed by the students, in this 
mathematical context, that referred to entities that were not entirely concrete, in the 
sense of being physical objects that could be touched, but which had certain concrete 
characteristics, which were reflected in the students’ gesture. These were specific 
mathematical procedures, algorithms, and operations, for example, the algorithm for 
adding fractions. When students discussed such algorithms, they often created 
gestures in the air (or on the surface of the table) that reproduced, either in whole or in 
part, the way that such procedures would be written out on paper. Similarly, in talking 
about a fraction, students might indicate its “parts” (numerator or denominator) by 
pointing to an imaginary written fraction, or by “covering” the denominator with a 
hand. 

 McNeill’s typology included only one category for iconics, which, in his 
corpus, always referred to concrete, physical objects, rather than to written 
inscriptions for generalized procedures like mathematical algorithms. In order to 
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create a more accurate typology for gestures in a mathematical setting, I divided 
McNeill’s category of “iconic” into two sub-types: “iconic-physical” and “iconics-
symbolic.” Figure 1 would be an example of an iconic-physical gesture, and Figure 2, 
below, shows an iconic-symbolic (the student is discussing how she learned the 
algorithm for adding two fractions, working vertically). 

 

Figure 2: “I remember learning that you put one under the other...” 

 

Metaphorics 

The second type of gesture found in the data were metaphorics. Metaphorics, 
according to McNeill, are gestures where “the pictorial content presents an abstract 
idea rather than a concrete object or event” (McNeill, 1992, p.14). Metaphorics were 
found referring to a great variety of mathematical abstractions, including comparisons 
of numbers, equality or similarity, generalized actions (“dividing it up,” “reducing it,” 
“doing it themselves”), and generalized mathematical entities like statistics, ratios, 
and formulas. The gestures associated with ideas of “more” and “less” showed an 
interesting contrast. There were two cases in which students talked about something 
more or additional, and in both cases, the gesture consisted of a single tap or touch of 
the table, followed by another tap or touch to the right of the first one. Figure 3 
illustrates the starting position of one of these “more” gestures, with arrow indicating 
that the gesture concluded with a tap to the right. The context is that the student is 
discussing what happens when the numerator of a fraction is larger than the 
denominator, resulting in a mixed number (“one and” the fractional part). 
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Figure 3: “If it was more than what the bottom was then it would become, like, 
one and...” 

By contrast, the single gesture that referred explicitly to “less” consisted of 
waving two fingers toward the student’s left, as illustrated in Figure 4. 

 
Figure 4: “We’re each getting less” 

 

Although the pattern of gesturing to the right to indicate “more” and to the left to 
indicate “less” is at this point a hypothesis that would need to be confirmed with more 
cases, it is plausible that this contrast is being represented, metaphorically, by gestures 
that move or point in opposite directions. Furthermore, the choice of directions is 
probably not arbitrary, but is instead related to metaphors involved in the basic 
construction of the idea of number. 

 According to Lakoff and Núñez (2000), there are four basic, or grounding, 
metaphors for building an understanding of number and arithmetic. Grounding 
metaphors are those that “directly link a domain of sensory-motor experience to a 
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mathematical domain” (p.102). One of the conceptual metaphors for arithmetic is 
moving along a path. In this metaphor, the concrete, physical experience of being at a 
particular location on a path, and of moving toward or away from a specified point, 
are used as the source domain for understanding numbers and arithmetic. Under the 
metaphorical mapping, locations on the path map to numbers, and moving farther 
away from the beginning of the path (zero) means the numbers are getting larger, 
while moving in the opposite direction means that numbers are getting smaller. This 
conceptual metaphor is similar to the more specific metaphor, Numbers-Are-Points-
On-A-Line, where the path is specified to be a straight line. The Numbers-Are-Points-
On-A-Line mapping is used within the Number Line conceptual blend, which 
identifies each point on a line with a number, and each number with a point on a line 
(p. 48). All of these physically-grounded ideas are used in the conventional inscribed 
representation of the number line, familiar to most primary school children. This 
“concrete” representation of the number line has certain conventional features that are 
not specified within the conceptual metaphors or blend. First, the number line is 
oriented horizontally, and also, the numbers get larger as you move toward the right, 
and smaller to the left. Although this orientation is not required by the conceptual 
metaphors or blend, it does provide a possible source for the directions used by the 
students in the gestures associated with ideas of “more” and “less.” 

 As a final example of a metaphorical gesture, Figure 5 shows a gesture 
associated with the concept “same as.”  

 
Figure 5: “and this can still be the same as...” 

 

The student’s hands both have the same “grasping” shape, but she alternates raising 
one then the other several times. This gesture is similar to two other cases, in which 
the phrases “just like” and “really match” are associated with alternating up and down 
gestures of hand-shapes that are similar to each other. This is a concise, yet 
metaphorical, way of highlighting the “sameness” of two things, since the “things” 
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being compared (the hands) resemble each other, but do not look like their referents, 
which might be fractions, other kinds of numbers or any other kind of thing. 

 

Deictics 

The final type of gesture found in the corpus of student gestures were deictics.  A 
deictic is a “pointing movement [that] selects a part of the gesture space” (McNeill, 
1992, p. 80). Sometimes diectic gestures point to actual objects near the speakers, or 
to directions in the real world (north, south, front, back, etc.). However, deictic 
gestures can also indicates imaginary objects, people, or elements of a “space” that 
has already been constructed through previous gestures and speech. Figure 6 shows an 
example of a deictic gesture, which is actually the gesture immediately following the 
one shown in Figure 5. Both of these gestures occurred while the student was 
describing an initial confusion she had about equivalent fractions. What the student 
said was, “the whole concept of how you can, it can split and split, and this can still be 
the same as this.” This phrase was associated with three gestures. The first was an 
iconic-physical “chopping” motion, corresponding to the phrase “split and split.” The 
second was the “same as” gesture shown in Figure 5. And, finally, as shown in Figure 
6, the second “this” in the sentence was accompanied by a “placing” gesture toward 
the right, indicating the location, in gesture space, of one of the two equivalent 
objects. 

 

 

Figure 6: “this” 

 

Grounding metaphors and fractions 

The four grounding metaphors for arithmetic are object collection, object 
construction, measuring stick, and motion along a path (Lakoff & Núñez, 2000). Both 
the words and the gestures utilized by the students when talking about fractions can 
provide evidence about which unconscious metaphor underlies their understanding of 
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this concept. When the students were asked to give a definition of fraction, only two 
utilized gestures. The gestures used by these two students are described in Table 1 
(abbreviations for the gesture descriptions are: RH, LH, BH= Right hand, Left hand, 
Both hands; C-, L- and S-shapes=ASL hand shapes). 

 

Who Speech Gesture Description Type 

KG But it's only a piece of - LH, L-shape, cutting motion, palm toward 
face 

IP 

KG a piece of the wh- LH, open L, parallel to table M 

KG a piece of whatever we're dealing with 
that's whole 

BH, symmetric  open L-shapes, thumbs up, 
palms facing body 

M 

KG it's just a portion of  LH toward body, slightly curled S-shape, 
bounced toward body 

M 

AT a portion of a pie slide LH fingers along edge of table M 

 

Table 1: Gestures associated with definitions of fractions 

 
The definitions given by students who did not use gestures were quite similar, and 
included the following: 

I would probably put like a part of a whole. 

A part to a whole number 

A fraction is something that breaks up whole numbers 

You’re just taking something out of the whole 

Both the cutting and slicing gestures, as well as the verbal definitions referring to 
“parts”, “breaking up” and “taking something” out of wholes indicate that the students 
are utilizing an object construction metaphor for understanding fractions. Only if 
whole numbers are constructed of parts can those parts constitute another kind of 
number, a fraction. Within the “Arithmetic is Object Construction” metaphor, 
numbers are seen as objects, with the smallest whole object corresponding to the 
number one (the unit). A simple or unit fraction is understood as being “a part of a 
unit object (made by splitting a unit into n parts)” and a complex fraction (m/n) as “an 
object made by fitting together m parts of size 1/n” (Lakoff & Núñez, 2000, p. 67). It 
should be noted none of the students’ comment or gestures indicated an understanding 
of fractions in terms of object collections (although it is possible to use fractions to 
describe a subset of a larger set of objects) or portions of a measuring stick or of a 
motion along a path. Thus, based on the data collected from these students, the source 
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domain underlying their ideas about fractions is the idea of a number as an object 
constructed out of parts. 

 

Discussion 

The purpose of the research reported here was to investigate the ways that 
undergraduate prospective elementary school teachers talked and gestured about 
fractions, a topic that is often problematic for children (and, sometimes, their 
teachers). It was hoped that the students’ spontaneous, unconscious gestures as well as 
their speech could help serve as a window into students’ understanding of this topic. 
The gestures displayed by the students fell into four categories: iconic-physical, 
iconic-symbolic, metaphoric, and deictic. Furthermore, both the students’ gestures and 
their words indicated that their thinking about fractions was based on the conceptual 
metaphor that considers numbers to be constructed objects. Student gestures related to 
“more” and “less” seemed to be related to the conceptual blend that identifies 
numbers as points on the line, and to conventional features of the inscribed number 
line. Future research will continue to explore gestures related to fractions as well as 
other mathematical topics, and will undertake a deeper analysis of metaphorical 
gestures in situations involving mathematical talk, including learning and teaching 
settings. 
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A REVIEW OF SOME RECENT STUDIES ON THE ROLE OF 
REPRESENTATIONS IN MATHEMATICS EDUCATION IN 

CYPRUS AND GREECE 
Athanasios Gagatsis, University of Cyprus, Cyprus 

Iliada Elia, University of Cyprus, Cyprus 
 

Abstract: The findings of recent studies are combined and discussed to investigate 
the effect of different modes of representations on the understanding of mathematical 
concepts and mathematical problem solving (MPS). The samples of the studies 
consisted of students of primary and secondary schools in Cyprus and Greece. 
Despite the variation of the studies on the mathematical content they examined and 
the research methods they employed, some common remarks have occurred. 
Compartmentalization (lack of competence in the conversion between different kinds 
of representations) was a general phenomenon that was observed in students’ 
behavior. Furthermore, the studies’ findings concur with the view that the effect of a 
representation on mathematics learning depends on the context in which it is used. 

 

Keywords: representation, compartmentalization, conversion, number line, function, 
absolute value, problem solving, implicative analysis, similarity diagram. 
 

INTRODUCTION 
Last decades a great attention has been given on the concept of representation and its 
role in the learning of mathematics. A basic reason for this emphasis is that 
representations are considered “integrated” with mathematics (Kaput, 1987). In 
certain cases, representations are so closely connected with a mathematical concept, 
such as a graph with a function, that it is difficult for the concept to be understood 
and acquired without the use of the particular representation. Each representation, 
however, cannot describe thoroughly a mathematical concept, since it provides 
information just to a part of its aspects (Gagatsis & Shiakalli, 2004). Hence, three 
presuppositions for the mastery of a concept in mathematics are the following: First, 
the ability to identify the concept in multiple systems of representation; second, the 
ability to handle flexibly the concept within the particular systems of representation; 
and third, the ability to “translate” the concept from one system of representation to 
another (Lesh, Post & Behr, 1987).  

Students experience a wide range of representations from their early childhood years. 
A main reason for this is that most mathematics textbooks today make use of a 
variety of representations more extensively than ever before, in order to promote 
understanding. However, a reasonable question that arises is which the actual role of 
the use of representations is in mathematics learning. A considerable number of 
recent research studies in the area of mathematics education in Cyprus and Greece 
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investigated this question from different perspectives. In an attempt to explore more 
systematically and determine the nature and the contribution of different modes of 
representations (i.e., pictures, number line, verbal and symbolic representations) on 
mathematics learning, the present paper reviews and integrates these strands of 
research, which examine the effect of various representations on the understanding of 
mathematical concepts and MPS, in primary and secondary education, by presenting 
and discussing their main findings. Specifically, the studies reported in this paper 
have examined the role of representations in the following processes or strands of 
mathematical content: addition and subtraction and solving of one-step routine 
problems in the context of primary education; functions, ordering of real numbers and 
absolute value in the context of secondary education. The present review aims at 
identifying the difficulties that arise in the conversion from one mode of 
representation of a mathematical concept to another and examining the phenomenon 
of compartmentalization which may affect in a negative way mathematics learning. 
We consider that compartmentalization appears when students deal inconsistently or 
incoherently with relative tasks that differ in a certain feature, i.e., mode of 
representation. Findings of the studies included in this paper will clarify further the 
particular phenomenon in students’ behavior.    

REPRESENTATIONS IN THE LEARNING OF MATHEMATICS IN 
PRIMARY SCHOOL 

The use of number line in the addition and subtraction of natural numbers  
Gagatsis, Shiakalli and Panaoura (2003) investigated the use of number line in 
primary school, as a geometrical model for the understanding of addition and 
subtraction of natural numbers by 7-8-year old students. For this study’ s needs four 
tests (A, B, C and D) including twenty-eight paper and pencil tasks were constructed 
and administered to 106 students. In test A and test B students were asked to 
complete 8 mathematical sentences of addition or subtraction, e.g., 8+6=�, 17-8=�. 
Students were not allowed to use number line diagrams to complete the tasks of test 
A, while they had the opportunity to use number line diagrams to complete the tasks 
of test B. In test C students were expected to complete number line models of 
addition or subtraction in order to find the results of 8 mathematical facts. Finally, in 
test D students were expected to write the addition or subtraction sentence to 
represent the number line model of addition or subtraction.  

Students exhibited high success rates in test A (from 97.2% in task A1 to 63.2% in 
task A8), and test B (from 91.5% in task B1 to 74.5% in task B8). In tests C and D 
significantly lower scores were observed (from 68.9% in task C1 to 47.2% in task C8, 
and from 67% in task D1 to 54.7% in D4, respectively). A statistical computer 
software, namely CHIC, (Bodin, Coutourier & Gras, 2000) was used for the 
processing of the data. It provided a similarity diagram (Lerman, 1981) that allowed 
for the grouping of the tasks based on the homogeneity by which they were handled 
by the students. This diagram (Figure 1) revealed the distinction of the tasks 
according to the use of the number line that was required. In particular, students’ 
responses to the tasks, where the use of number line was essential (test C and D), 
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established a cluster of variables with strong similarity relations (Cluster 3). 
Furthermore, most of students’ responses to the tasks, where there was not a number 
line (test A), formed a separate similarity cluster (Cluster 2). Students’ responses to 
the tasks, where they had the opportunity to use the number line (test B), related 
directly to each other and were also linked to a part of the responses to the tasks 
without number line, thus forming another cluster (Cluster 1).  

 

 

 

 

 

 

 

 

Figure 1: Similarity diagram of students’ responses to the tasks of the four tests 

Note: The similarities in bold color are important at level of significance 99%. 

The above findings indicated the existence of compartmentalization in students’ 
behavior, since they seemed to deal with the tasks with number line in a distinct and 
inconsistent way relative to the tasks without number line. For example, students who 
were able to tackle an operation in a symbolic form successfully were not necessarily 
in a position to represent this operation on the number line correctly. The 
phenomenon of compartmentalization reveals a cognitive difficulty that arises from 
the need to accomplish flexible and competent conversion back and forth between 
different kinds of mathematical representations (Duval, 2002). In the particular study, 
this difficulty arises from the double nature of number line in the teaching of 
mathematics. In fact, number line constitutes a geometrical model, which involves a 
continuous interchange between a geometrical and an arithmetic representation. 
Based on the geometric dimension, the numbers depicted in the line correspond to 
vectors and the set of the discrete points of the line. According to the arithmetic 
dimension, points on the line can be numbered in a way that measuring the distance 
between the points may represent the difference between the corresponding numbers. 
The simultaneous presence of these two conceptualizations may limit the 
effectiveness of number line and thus hinder the performance of students in 
arithmetical tasks (Gagatsis, Shiakalli & Panaoura, 2003).   

Visual representations in MPS 
Within mathematics education in Cyprus, concerns have been raised on the role of 
visual representations on MPS. In particular, a number of recent studies, carried out 
in Cyprus, have investigated the effects of different types of pictorial representations 
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on primary students’ MPS performance. One of the most significant commonality 
that characterizes these studies is the categorization of pictures they used in order to 
examine the role of each type of pictures in students’ performance, in MPS. On the 
basis of Carney and Levin’ s (2002) proposed functions that pictures serve in text 
processing, the studies presented in this section suggest four functions of pictures in 
MPS: (a) decorative, (b) representational, (c) organizational, and (d) informational. 
Decorative pictures do not give any actual information concerning the solution of the 
problem. Representational pictures represent the whole or a part of the content of the 
problem, while organizational pictures provide directions for drawing or written work 
that support the solution procedure. Finally, informational pictures provide 
information that is essential for the solution of the problem. 

In one of these research studies, Theodoulou, Gagatsis and Theodoulou (2004) 
investigated which categories of pictures (decorative, representational, organizational 
and informational) had a positive effect on second grade students’ performance in the 
solution of standard problems. Two tests were administered to the participants. The 
first test consisted of verbal problems and the second test involved the same problems 
accompanied by pictures. A problem accompanied by an informational picture that 
was included in the second test is given in Figure 2. 
 
 
 
 
 
 
 

Figure 2: A problem with an informational picture in the second test on MPS 
(Theodoulou et al., 2004) 

Results showed that decorative pictures did not have any effect on children’s MPS 
performance. They may have helped to make the text more attractive, but they were 
unlikely to enhance desired outcomes related to understanding or applying the 
problem content. Representational pictures had a significant positive role in some 
cases, according to the mathematical operations needed to solve the problem. In 
particular, it was found that the more complex the structure of the problem, the more 
likely it was that representational pictures were helpful. On the other hand, 
organizational pictures had a clearly significant positive effect on students’ 
achievement. This finding suggests that pictures having this particular function 
helped students understand the structure of the problem and organize the data in order 
to reach a solution for the problem. As for informational pictures, despite their 
essential informational role, they did not have a positive effect on students’ MPS 
performance relative to their performance when the information in the picture was 
included in the problem text. The similarity diagram (Figure 3) shows how tasks are 
grouped according to the similarity of the ways in which they were solved.  

 

I bought a paintbrush and an 
exercise book. How much did I 
pay in all? 

Working Group 1

CERME 4 (2005) 105



 

 

 

 

 

 

 

Figure 3: Similarity diagram of students’ responses to the problems of addition, 
subtraction, multiplication and division with and without pictures 

Two clusters are identified in Figure 3. The first cluster consists of students’ 
responses in the addition problems and in a part of the subtraction problems. The 
second cluster involves students’ responses in the division problems and in another 
part of the subtraction problems. The formation of these clusters indicates that 
students deal with addition problems in a different manner from division problems, 
indicating the impact of the mathematical operation involved in the problems on 
students’ performance. This effect is enhanced by the formation of a separate group 
of two variables that represent students’ responses in subtraction problems within 
each cluster. It is obvious that the inclusion of a picture in the problem context also 
has an influence on students’ responses. This remark is supported by the formation of 
a group involving students’ responses in tasks of addition or division accompanied by 
pictures and a distinct group of students’ responses in tasks of addition or division 
problems without pictures, respectively, in each cluster. Hence, the phenomenon of 
compartmentalization appears in students’ behavior when solving routine problems in 
different representational forms, i.e., verbal and pictorial. Moreover, it can be inferred 
that the kind of mathematical operation needed in order to solve the problem (e.g., 
addition, division) contributes more to the formation of similarity groups of students’ 
responses to the tasks, than the mode of representation of the problem.  

REPRESENTATIONS IN THE LEARNING OF MATHEMATICS IN 
SECONDARY SCHOOL 

Representations and the concept of function 
The concept of function is of fundamental importance in the learning of mathematics 
and has been a major focus of attention for the mathematics education research 
community (e.g., Dubinsky & Harel, 1992; Gagatsis & Shiakalli, 2004).  To 
determine whether a conversion back and forth between different kinds of 
mathematical representations of function is accomplished by students of grade 9 (14 
years old), Gagatsis, Elia and Andreou (2003) conducted a research examining a 
possible compartmentalization of the modes of representation of functions (i.e., 
graphic, symbolic, verbal). In particular, two tests were administered to the 183 
participants of the study. The first test (A) consisted of 6 tasks in which students were 
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Test A Test B 

given the graphical representation of an algebraic relation and were asked to 
“translate” it to its verbal and algebraic form, respectively. The second test (B) 
consisted of 6 tasks (involving the same algebraic relations) in which students were 
asked to “translate” a relation from its verbal representation to its graphical and 
algebraic mode, respectively. For each type of conversion, the following types of 
algebraic relations were examined: y<0, xy>0, y>x, y=-x, y=3/2, y=x-2.  

The application of Gras’s statistical implicative analysis to the collected data by using 
CHIC produced the implicative diagram in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Implicative diagram of students’ responses to the two tests for function 

The implicative diagram contains implicative relations, which indicate whether 
success to a specific task implies success to another task related to the former one. 
Figure 4 shows that there was a compartmentalization between students’ responses to 
the tasks of the first test and the tasks of the second test, although they involved the 
same algebraic relations. This finding reveals that different types of conversions 
among representations of the same mathematical content were approached in a 
completely distinct way. For example, students who accomplished the conversion 
from a graphical representation of an algebraic relation to its verbal representation 
were not automatically in a position to translate successfully the same algebraic 
relation from its verbal representation to its graphical form and vice versa. This 
behavior indicated that students did not construct the whole meaning of the concept 
of function and did not grasp the whole range of its applications. As Even (1998) 
supports, the ability to identify and represent the same concept in different 
representations, and flexibility in moving from one representation to another allow 
students to see rich relationships, and develop deeper understanding of the concept. 
Similar findings emerged from a replication of this study to older students (Grade 11), 
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even though success rates to the tasks were higher in this case than in the case of 
ninth graders. 

The axis of real numbers in the understanding of the ordering of numbers and 
absolute value 
Pantsidis, Zoulinaki, Spyrou, Gagatsis and Elia (2004) investigated the difficulties 
that arise in the handling of a complex mathematical construction, i.e., the axis of real 
numbers. The sample of the study consisted of 295 students of Grade 10 in Greece, 
who were familiar with the use of the axis of real numbers from previous years. The 
test that was administered to the participants included tasks such as placing of 
numbers on the axis of real numbers (Figure 5, Task 7) and representation of 
solutions of inequalities with or without absolute value on the axis of real numbers 
(Task 3). It also consisted of tasks which combined the ordering, the absolute value 
and the projection of a point on the axis (Task 8). Figure 5 presents an extract from 
the test.  
3.  Indicate on each of the axes the solution of the corresponding inequality.  
        �-1<3                |�|-1<3                                                      �2-1>3 
 
    4   -3   -2   -1   0   1   2   3  4          -4   -3   -2   -1   0   1   2   3  4             -4   -3   -2   -1   0   1   2   3  4 

7.  Place number 2  on the axis of real numbers, at first approximately and then exactly.  
 
8. If point A can be anywhere on the circle then mark the following sentences: (T) for True and (F) for False. 
a)   �=2                d)   |�|�2                                                                              
    
b)   ��2                e)   |�|=2 
 
c) -2���2  
                            
 

Figure 5: An extract from the test on the use of the axis of real numbers 

Findings showed that students achieved better results in the ordering and placing of 
given natural numbers, the solution of simple inequalities and the representation of 
their solution on the axis. The solution of inequalities including absolute value caused 
difficulties, which appeared to be greater in the solution of quadratic inequalities. The 
application of the implicative analysis on the data generated a similarity diagram 
(Figure 6), which involved two distinct clusters. The first cluster (Cluster 1) consists 
of tasks involving the algorithmic resolution of inequalities and placement of 
numbers on the axis of real numbers (Tasks 1-7), while the second cluster (Cluster 2) 
consists of the geometric tasks that combined the arrangement, absolute value and 
projection of a point on the axis of real numbers (Task 8).  

The structure of the diagram indicates a compartmentalization of the tasks of the test. 
Students approached in a completely distinct way the tasks which involved the use of 
the axis of real numbers in a geometrical context, relative to the tasks involving the 
algorithmic resolution of inequalities and placement of numbers on the axis. It can be 

�

� �

�
(�,�)
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asserted that the use of another geometrical representation connected to the axis of 
real numbers leaded students to a completely different approach. Therefore, possible 
instructive activities would focus on the unification of the two different groups of 
tasks. 

 
 
 
 
 
 
 

 
 

 

Figure 6: Similarity diagram of the tasks on the use of the axis of real numbers 

DISCUSSSION 
This paper integrates the findings of recent studies to investigate the role of external 
representations in the learning of mathematical concepts and MPS by students 
ranging in age from 7 to 16 years old. Even though these studies were conducted in 
different settings, with various age samples, using diverse research methods, some of 
their findings are congruent. This consistency promotes the significance, validity and 
applicability of their findings. Furthermore, this review entailed some considerations 
as regards the difficulties confronted by students when dealing with different modes 
of mathematical representations as well as the phenomenon of compartmentalization.  

Success in one mode of representation of a concept or in solving a problem does not 
necessarily imply success in another mode of representation for the same concept or 
the same problem. Lack of implications or connections among different modes of 
representations indicates the difficulty in handling two or more representations in 
mathematical tasks. This incompetence is the main feature of the phenomenon of 
compartmentalization in representations, which was detected in most of the research 
studies included in this paper. The differences among students’ scores in the various 
conversions from one representation to another, referring to the same algebraic 
relation or function or other mathematical concept provides support to the different 
cognitive demands and distinctive characteristics of different modes of representation. 
This inconsistent behavior can be also seen as an indication of students’ conception 
that different representations of the same concept are completely distinct and 
autonomous mathematical objects and not just different ways of expressing the 
meaning of a particular notion. Compartmentalization is perhaps the only general 
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phenomenon related to the field of representations, since it appears in the learning 
process of different mathematical concepts, in different forms of representation, in 
the behavior of students of different age. Learning, however, can be accomplished 
through “de-compartmentalization” and coordination of different representations of 
the same mathematical situation (Duval, 2002). Therefore, the use of multiple 
representations in mathematics learning, the connection and comparison with each 
other and the conversion from one mode of representation to another should not be 
left to chance, but should be taught and learned systematically, so that students 
develop the skills of representing and handling flexibly mathematical knowledge in 
various forms.   

Based on the findings of the research studies reported in this paper, it can be inferred 
that the use of representations has a significant, but not always a positive effect in the 
learning of mathematics, such as the number line in addition and subtraction of 
natural numbers. Moreover, the effect of a mode of representation in mathematics 
learning depends on the context it is examined. Thus, general assertions, such as 
“representations help understanding or the development of mathematical thinking”, 
do not contribute substantially for the research in mathematics education or 
mathematics teaching. Systematic and analytical exploration of the effect of specific 
modes of representations, in specific concepts or procedures, in the behavior of 
students of specific age, culture etc., are critical for the articulation of verified, 
substantial and applicable conclusions.  

Also, the review of research for this paper indicated that in several cases, researchers 
use various terms for describing the same mode of representation or even use the 
same term for referring to different modes of representation. Therefore, a clarification 
of the different types of representation (such as analogous, diagrammatic, visual, 
graphical representations) needs to be conducted, in order to accomplish the 
integration and comparison of various research studies in the field of representations 
in mathematics education. Similarly, a clarification of the terms conversion, 
translation, transformation, transition etc., which are widely used in research papers 
in the same domain is also essential. In a mathematical task one can distinguish 
treatment from conversion. This distinction is complex and has not been employed in 
the studies of this paper. Using this distinction could be interesting and beneficial in 
future research focusing on mathematical representations. 
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Abstract: During the first school years, through elementary and junior high school, 
one major aim of the teaching of geometry is to help the students move from a 
‘geometry of drawings’ (G1) towards a more theoretical geometry (G2). The 
geometrical drawings, as well as the language associated with them, about actions as 
well as about objects, are crucial points in this shift, since they move from the status 
of objects of study (on which physical actions are performed) to the status of physical 
representations of theoretical elements used in a metaphoric way. In particular, at 
the beginning of high school this causes a great ambiguousness among students, 
possibly reinforced by the associated language, which is much the same as the one in 
use at elementary school. In this paper, we study some features of this problem and 
propose some elements for further investigation. 

 

Keywords : pre-service elementary teachers, geometrical drawings, construction 
problems, metaphorical actions. 

 

Following many authors, we consider elementary geometry as a body of 
knowledge embodied in the ‘physical’ world [Lakoff & Nuñez 2000], even if it is 
intended to become, throughout schoolyears, part of a mathematical theory. More 
precisely, we consider that the geometry which is taught through elementary and 
secondary schools successively refers to two paradigms, the first one (‘spatio-
graphical” geometry, or G1) tending to be progressively replaced by the second 
(‘proto-axiomatic’ geometry, or G2). A consequence is the existence of quite a period 
of time during which these two paradigms co-exist and  compete with each other, in a  
more or less visible way. This competition is frequently deceptive, since G2 rests 
strongly on G1 by using its elements as metaphors, not only for objects (the so-called 
‘figures’) but also for actions (for instance the so-called ‘constructions’). More 
precisely, this paper deals with the following questions : What are constructions 
within the G1 paradigm? within the G2 paradigm? In what sense do the first ones 
appear as metaphors for the second ones ? What are the observable effects of the 
fundamental ambiguousness on students? What can be done to give them a better 
access to theoretical geometry ? In what follows, we shall try to give some elements 
for answering these questions, taken from a current research with French pre-service 
elementary schoolteachers. 
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1. Theoretical frame 
 Different geometrical paradigms appear in the course of the long time devoted 
to the learning of geometry. Two of them are of particular importance at junior high 
school level: 

- the first one, sometimes called ‘spatio-graphical’ geometry ([Laborde & 
Capponi 1995]) or G1 ([Houdement & Kuzniak 1998], [Parzysz 2002]), is a 
formalisation of the physical space; in this geometry, the objects (models, 
drawings on a sheet of paper, or a blackboard, or a computer screen…) have 
a physical nature; the actions are actually carried out on the objects ; the 
validations of the results are mostly perceptive and performed with or 
without the help of specific instruments (comparison, measures); 

- the second one, or ‘proto-axiomatic’ geometry ([Parzysz 2002]) can be 
considered as a geometry partially theorized, the implicit reference of which 
is a Euclidian axiomatic theory, as for instance those elaborated by Hilbert 
and Choquet. Its objects (configurations) have a theoretical nature; the 
actions refer to these theoretical objects and the validations are of a 
‘hypothetic-deductive’ type (mathematical proofs). 

Very roughly, one could say that G1 is the kind of geometry at work at 
elementary school, while G2 is the geometry in use at senior high school level. 
Hence one of the aims of geometry teaching in junior high school is to help the 
students move from one paradigm to the other, and this, for some reasons that will 
be discussed below, is not an easy job and may take a lot of time. In fact, the 
construction of geometrical concepts may require several years, for “concepts often 
go through a stage where they are multiple-determined : simultaneously determined 
by different ‘worlds’, implying different rules, norms, and concepts” [Van Oers 
2002 p. 34]. And, during this time, many junior high school students remain in a 
kind of geometrical ‘twilight zone’, according to Van Oers’s nice metaphor: “in 
[Vygotsky’s] view these transition stages are always characterized by two ‘worlds’ 
coexisting at one time so that the situation can be described as belonging to both 
worlds, or to none of them in particular. It is like twilight, where night and day meet 
each other and it is neither day or night in the full meaning of these worlds.” [op. 
cit. pp. 51-52]. 

In addition to the fact that many junior high school students are in this 
geometrical ‘twilight zone’, two particular features make it even more difficult to 
know the difference between G1 and G2 and, for the teacher, to ascertain to which 
paradigm a given student stands ‘closer’. 

The first feature is that both G1 and G2 make constant use of geometrical 
drawings, which are often of the same type (i.e. made with the help of drawing 
instruments). In the case of G1, a drawing is indeed the object on which the work is 
done;  in G2, it is a representation of the theoretical object, but the mere observation 
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of a drawing does not make it possible to ascertain which paradigm it refers to. It is 
often the case that, although they are supposed to work on a G2 situation, some 
students work in fact on a corresponding G1 situation. This has been pointed out by 
Edwards, among others, in the particular case of geometrical microworlds: “When 
[students] look at the graphical window of the microworld, they see a continuous (but 
normally "invisible") plane that provides a background, on which geometric figures 
are located. The commands (the geometric transformations) are used to move the 
geometric figures around on top of this plane. By contrast, for the mathematician, the 
plane consists of an infinite number of discrete points, and transformations are 
simply mappings of those points that preserve some properties and change others.” 
[Edwards 2002]. 

The second feature is that in both G1 and G2 the discourse about the geometrical 
situation in play makes use of many polysemous words, regarding as well the objects 
in play and the ‘actions’ performed on them (see below). For instance: 

- a ‘circle’ may both be a figure drawn with compasses and the set of the 
points situated at a given distance from a given point; 

- ‘to draw a circle’ may as well mean to make a drawing on a sheet of paper 
as well as be a metaphor indicating that the theoretical object can be defined 
from the objects previously defined. 

[N.B. We will not use the word ‘figure’, which is currently used in French but suffers 
from an awkward polysemy : sometimes it means an object of the theory, defined by a 
wording, and sometimes a physical representation of such a theoretical object 
(especially a drawing). We shall rather use the phrases ‘theoretical object’ for the 
first meaning and ‘geometrical drawing’ for the second.] 

These particular features make it generally difficult, just by observing a student’s 
production, to tell anything about his/her position with respect to G1 and G2. 
However, in some cases, studying a student’s discourse makes it possible to guess it, 
for instance when he/she uses perceptive data in a geometrical proof.  

Let us now exemplify some difficulties caused by these specific features of 
elementary geometry with the case of construction problems. In so doing, we shall 
see, in this case as well as in problem solving tasks, that some clues can provide an 
insight on the type of geometry in which a given student is working. 

 

2. Constructions within G1 and G2 
 As said above, the G1 and G2 paradigms are not only defined by the objects in 
play (physical or theoretical) and the kind of validations accepted (perceptive or 
hypothetic-deductive), but also by the actions performed on the objects. Like the 
word ‘figure’, the word ‘action’ has various meanings ; for instance Duval [Duval 
1994] insists on the possible processings which can be operated on a geometrical 
drawing (‘figure’), namely mereological, optical and positional changes. In this paper 
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we shall deal, within plane geometry, with a particular and well-known type of action 
called ‘construction’; we shall also consider this word as meaning an action, and not 
the result of the action. 

What is a construction in G1 and in G2? 

 In G1, what is traditionnally called ‘construction’ is an actual operation 
consisting in the making of a geometrical drawing on a sheet of paper, a blackboard 
or a computer screen, with the help of devices which may be specified or not. In the 
case of paper-and-pencil environment, rulers, compasses, squares and protractors are 
the usual instruments used in geometry classes, together with others which are less 
‘classical’ (for instance the edges of a ruler, intended to draw parallel lines). In the 
case of computer environment, the ‘instruments’ are the basic objects which can be 
drawn by the software (a line passing through two given points, a line perpendicular 
to another, a circle centred on a given point and passing by another given point, etc.). 

In any case, for pedagogical reasons it is possible for the teacher to oblige the 
students to use only particular instruments: 

- in a computer environment, he/she may prevent the use of some tools of the 
software by hiding them from the students; 

- in a paper-and-pencil environment, he/she will forbid the use of instruments 
other than those which are explicitly specified. For historical reasons (cf. for 
instance [Parzysz 2001]) the association ruler-and-compasses is the most 
frequent set of allowed instruments, and it is usually used, even when 
nothing is said about which instruments are to be used. 

In G1, the answer to a construction task is a drawing obtained from a given 
drawing ; it may be accompanied by a description of the sequence of actions applied 
on the initial drawing in order to get the required final drawing. 

In G2, a solution for a construction task consists of a sequence of assertions 
allowing the determination of a theoretical object under some fixed constraints, on 
the basis of other objects (given objects), i.e. proving its existence and, if requested, 
indicating how many different objects fulfil the imposed constraints. Depending on 
the case, these constraints can be of various natures; for instance, they may impose 
that the only objects to appear in the process should belong to fixed types (e.g. lines 
and circles), or forbid any measuring (distances, angles…), etc. Usually, the written 
discourse is accompanied by a drawing representing the final configuration, i.e. the 
initial configuration and the ‘new’ objects mentioned in the text; in this case, the 
drawing merely plays an illustrating role. 

The associated formulations 

For instance, the following construction problem could be posed within G2: 

“How can one get the perpendicular bisector of two points, A and B, by using 
only straight lines and circles?” 
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But a much more frequent formulation of this problem –in fact the only one 
used in classes- is: 

“Draw the perpendicular bisector of two points A and B, using only ruler and 
compasses. ” The phrase ‘ruler and compasses’ thus appears as a metaphor for 
describing the constraints. More generally, the language used to pose a G2 problem is 
directly borrowed from the language used in G1. 

But the constraints (i.e. the wording) are not the only features which are 
expressed in G2 with a metaphorical language taken from G1; it is the same for the 
constructions themselves (i.e. the answer). We shall now show it with an example. 

Let us go back to the problem given above as an example. Here are two 
possible formulations for the construction of the perpendicular bisector of A and B in 
G2: 

Formulation 1 

1- The circle centred on A and passing by B exists and is well defined; 

2- The circle centred on B and passing by A exists and is well defined; 

3- The intersection of these two circles is constituted of two points, which are 
to be called I and J; 

4- The line (IJ) is the perpendicular bisector of [AB]. 

This list of assertions can be considered as a construction in G2. It may (must) 
be completed with a justification for each of the four items by definitions and 
theorems belonging to Euclidian geometry. Obviously, this formulation is not the 
only one possible, and numerous others would be equally acceptable. Moreover, it is 
not usual, and the following one looks much more familiar : 

Formulation 2 

1. Draw the circle centred on A and going through B ; 

2. Draw the circle centred on B and going through A ; 

3. These two circles intersect in two points, I and J ; 

4. Draw the line (IJ) ; it is the perpendicular bisector of [AB]. 

In the present case the language used refers to action, physical gesture, motion. It 
is used spontaneously because it is the language used for effective constructions in 
G1. Using the language of action is thus shifting metaphorically the problem from G2 
to G1. When an ‘expert’ is working on a geometrical drawing, he/she is aware, at any 
moment, that this drawing is only a representation of the theoretical object; in a 
similar way, he/she is also aware that the metaphor can be extended to the actions 
performed on the objects. But this is far from being the case for most junior high 
school students (and for pre-service elementary schoolteachers as well); to many of 
them, these metaphors will not be perceived as such and will in fact become obstacles 
to the learning of geometry. 
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For elementary school pupils, geometrical drawings are not metaphors of a 
theoretical object but the very objects on which they work; in the same way, to them 
a list of actions as the one listed above (formulation 2) is not a metaphor for 
theoretical actions, but is a sequence of gestures to be physically performed. Our 
hypothesis is that, even when the teacher make students work in G2, the constant use 
of such language, apparently referring to physical actions, may lead some students to 
become more concerned with the gestures that they perform than with the theoretical 
objects that they are supposed to deal with, and thus contributes to confine them in 
G1. This hypothesis is based on our current research with pre-service elementary 
schoolteachers, among whom we have found frequent clues of a link between the 
formulations used by a student and the ‘geometry’ in which he/she works 
‘spontaneously’. In this short paper we can only give an example of such a link, 
based on the productions of two pre-service teachers : Jennifer and Audrey. 

 

3. The Jennifer and Audrey cases 
 The two items dealt with in this section are part of a questionnaire about 
geometry, taken by more than 700 French pre-service elementary schoolteachers at 
the very beginning of their training. 

Item 1: two points, M and N, are drawn near the centre of a sheet of paper. The first 
task is to draw the perpendicular bisector of M and N and indicate which properties 
of the bisector and which drawing instruments have been used to do so. Later, the 
students are requested to indicate the successive stages of their construction. 

 The construction task is clearly situated in G1, but the students (though most of 
them have taken non-scientific curricula) are supposed to be used to working in G2, 
since they all have passed through high school. In fact, practically all these students 
have passed a bachelor’s degree, and one could expect that, at such a level, they 
would spontaneously look at the situation from a G2 viewpoint; but our current study 
shows that it is far from being the general case.  

  To answer the last question the students produced quite a variety of texts; here 
are two of them, of course chosen on purpose. 

Audrey 

Draw two identical circles centred on N and on M. 

Draw the straight line passing by the intersecting points of these circles. 

This line is the perpendicular bisector of segment [MN]. 

Proof : the bisector is the line going through the middle of a segment and which is 
perpendicular to it. All the points of the bisector are equidistant from the extremities 
of the segment. 

Jennifer 
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- With compasses: 

* Place the point of the compasses on M and take the measure of segment 
[MN] 

* Draw an arc of acircle on each side of the segment 

* Place the point of the compasses on N and to the same thing 

- With ruler: 

 * Link the two points obtained as intersection points of the two circles. 

 One can see that Audrey’s formulation resembles our own formulation 2, even 
if she does not give any limitation for the radii of the circles and if her proof is 
unclear on the essential point of knowing which property of the bisector is used. On 
the other hand, Jennifer’s formulation is embedded in the gestures to be performed, 
which are described in great detail (e.g. where to put the points of the compasses). 
She also gives indications to draw arcs of circles rather than circles, i.e. only the 
‘useful’ part of the circles, which possibly reveal a ‘technical’ point of view. 

We could perhaps make a first guess on the basis of these formulations: 
Jennifer seems to be ‘rather on the G1 side’, while Audrey would be ‘rather on the 
G2 side’. 

The same questionnaire contained another item, for which we shall now have a 
look at the answers given by Audrey and Jennifer. 

Item 2: 

 

This task is voluntarily ambiguous: 

- if it is understood as belonging to G2, the answer to the first question will 
be “ABCD is a square”, since the geometrical properties coded on the 
drawing are sufficient to assert it; 

-  if it appears as being in G1, the answer cannot be the same because, on a 
perceptive point of view, ABCD does not look like a square.   

 

 

What can you say about quadrilateral ABCD ? 
How do you know it ? Explain in detail.  
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However, the codes shown on the drawing are known by all the students, and, 
being used a great deal at high school level (where G2 is the ‘official’ geometry), one 
could expect that this feature would prompt the students to give an answer in G2. 

As a matter of fact, Audrey’s answer says: 

It is a square. A quadrilateral which has 2 sides of the same length and 3 consecutive 
right angles is a square. 

But Jennifer’s answer is: 

ABCD has 3 right angles. AD = AB. We cannot call it a square because C is not a 
right angle. 

 From what has been said above, Jennifer’s answer can be seen as ‘rather on the 
G1 side’, because it rests on the physical properties of the drawing (‘C is not a right 
angle’) On the contrary, Audrey’s answer is again ‘rather on the G2 side’, because it 
is based on geometrical properties of the theoretical object represented by the 
drawing; she clearly considers this drawing as a coded image representing a 
geometrical configuration. So, this second item confirms the impression given by the 
first one : even if they work on the same tasks, Audrey and Jennifer do not practice 
the same kind of geometry.   

 

4. What about textbooks? 
 The first years of junior high school are a crucial time for enabling the students 
to shift from G1 towards G2. That is the reason why we have studied the usual 
textbooks of that level. In this paper we will only consider one example, taken from 
two first-grade textbooks, and more precisely observe how they deal with the 
construction of the perpendicular bisector. 

Textbook 11 

Example. In order to draw the perpendicular bisector of a segment [AB] :  

 

 
(1) Draw an arc of a circle 
centred on A, with a 
radius  more than half the 
length of AB. 

(2) Keeping the same radius, 
draw an arc of a circle centred 
in B : the two arcs of circle 
intersect in I and J. 

(3) Draw the line (IJ) : 

it is the perpendicular 
bisector of [AB]. 

                                                 
1 Collection Triangle. Ed. Hatier 2000, p. 206. 
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Textbook 22 

EXAMPLE  On a non-squared sheet, draw a segment [AB]; with a non-graduated ruler and 
a pair of compasses, construct the perpendicular bisector of this segment. 

 
����������������������������

� Draw two arcs of circles with the same radius, one centred on A, the other centred on B, 
which intersect in I and J. 

� Draw the line (IJ). The line (IJ) is the perpendicular bisector of the segment [AB]. 

Justification : by construction IA = IB, I is a point of the bisector of the segment [AB]; for 
the same reason JA = JB, J is a second point of the bisector. 

 

As far as the text is concerned, these two textbooks look similar. However, 
Textbook 2 indicates a general constraint (the circles must intersect with each other) 
whereas Textbook 1 gives the solution and says plainly how to get such a result (their 
radii have to be longer than half the length AB) :  the discourse in Textbook 1 seems 
more on the ‘G1 side’. 

Moreover, the diagrams which illustrate the discourse in both textbooks tend to 
confirm this interpretation : in Textbook 2 one finds only a drawing of the result of 
the construction, whereas Texbook 1, by giving a realistic representation of the 
compasses, puts a stress both on the tool and on the gesture. Moreover, Textbook 1 
breaks up the action of drawing the two arcs of circles (in fact, they cannot be drawn 
at the same time) whereas Textbook 2 synthesizes these two actions. And, above all, 
Textbook 2 gives a justification of the construction, which is totally absent in 
Textbook 1. Again, it appears that Textbook 1 describes a construction in G1 and 
remains continuously in G1, whereas Textbook 2 places itself in G2, at least partly. 

5. Conclusion 
The French geometry curricula, at the end of elementary school and at the 

beginning of junior high school, appear to be very largely similar in many respects. 
However they indicate that ‘from the very beginning of the first form, a different 

                                                 
2 Collection Nouveau Décimale. Ed. Belin 2000, p. 185. 
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standpoint is directed on geometry’3. From what has just been seen, it appears that 
the way of teaching geometry at the beginning of junior high school is torn between 
the two paradigms and that the teachers’ concern with the preservation of a continuity 
in the learning, by keeping to the language in use at elementary school in a new 
context, may become a didactic obstacle to the students’ access to a more theoretical 
geometry. In particular, giving too much precision in the description of the gestures 
to be performed to make a ‘construction’ may conceal the metaphorical role of this 
language, with the consequence that some students will remain quite a long time in a 
‘geometry of drawings’, as it is still the case with some pre-service schoolteachers. 
How to enable them to move towards a ‘theoretical geometry’ is indeed an important 
question, and we think it worthy of an investigation by researchers. 
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MEDIATION OF METAPHORICAL DISCOURSE IN THE 
REFLECTION ON ONE’S OWN INDIVIDUAL RELATIONSHIP 

WITH THE TAUGHT DISCIPLINE: 
AN EXPERIENCE WITH MATHEMATICS TEACHERS 
                        Angela Pesci, University of Pavia, Italy 

 
Abstract: After recalling some specific meanings related to the role of metaphorical 
discourse in communication processes, as developed in previous works, the paper 
reports an experience involving a group of mathematics teachers and centred around 
the metaphorical and artistic intertwining of mathematics and real life experiences. 
In particular, metaphors initially chosen by teachers are described: their evolution is 
then proposed in the specific case of two teachers who made such evolution visible. 
Final remarks concern an outline of possible developments and further studies on the 
positive role that metaphorical discourse might play with teachers in favouring a 
reflection on their own professional experience, on their own motivation to learn and 
on their own cognitive and communication styles, with the ultimate aim of a follow up 
in the classroom. 
 
Keywords: Mathematics teachers, Verbal and non-verbal Metaphors, 
Communication, Teachers’ personal dimension, Professional development. 
 
 
1. Introduction 
One of the core matters in the professional training of teachers is the identification of 
the most suitable intervention modalities, especially in the final phase of the process, 
which involves adult learners. Cultural knowings, which keep an important role, 
especially in their metacognitive aspects (for instance being able to reflect on one’s 
own thinking processes, identifying one’s own need for knowledge and being able to 
find answers that fit one’s own professional context) are not the only elements to be 
considered: individuals involved in training, as a whole, are equally important. In this 
respect, taking into account their previous training experiences, their individual 
motivation to learn, their specific cognitive qualities, their introspective and 
interpersonal needs, seems to be an inevitable step. 
The experience reported in this contribution was elaborated and realised in 
collaboration with Anna Gallo Selva, expert in Playback Theatre performing 
techniques and is widely described in Gallo Selva, A. (2003) and in Pesci, A. (2003a) 
and synthesised in Gallo Selva A. & Pesci A. (2004). The project meant to conjugate 
the disciplinary dimension of mathematics with the personal dimension of the 
involved teachers, with the aim of developing, through metaphorical discourse, a 
deep awareness of one’s own disciplinary and relational resources as well as 
promoting a welcome attitude towards colleagues and pupils. 
This contribution, in particular, shows how some metaphors, initially chosen by 
teachers to describe their relationship with mathematics, developed throughout the 
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meetings. However, before getting into this descirption it is necessary to point out 
how the role of metaphorical discourse has been interpreted during the whole 
experience. 

2. A possible role for metaphorical discourse 
The term metaphor comes from the union of two Greek words (meta, above and 
pherein, to bring) and points to the transfer of something (a word or else, for instance 
a gesture) from a main object (which is proper of the word or gesture) to another 
object, through a more or less implicit comparison. In previous works (Pesci, 2003a)  
and 2003, b)) some meaningful definitions of the term metaphor were collected, 
starting from the one proposed by Aristoteles. 
In this context, the interesting aspect is an interpretation of metaphor from word to 
discourse, to be located not only at the verbal level but also at the level of non-verbal 
communication, referring to gestures, actions, facial expressions, images, objects and 
sounds. 
As detailed in the quoted contributions, metaphorical discourse stimulates listeners to 
actively orient their thought, because it incorporates two forms of knowledge, the 
first based on rationality and logic (and mainly connected to the left hemisphere) and 
the other one based on imagination and creativity (mainly connected to the right 
hemisphere). The latter form of knowledge proves to be more meaningful, since it 
acts directly on individuals’ emotional part, which is the basis of any cognitive 
activity (Damasio, 1999; LeDoux, 1998). Hence each metaphor communicates at two 
levels: a superficial level of discourse content and a deeper level of implicit meanings 
being evoked. The latter level is given by the use of symbolic language, which is 
perceived by the unconscious and enacts strictly personal, and often original and 
meaningful, interpretations. 
Hence metaphors, ranging from verbal to artistic ones, become a privileged form of 
communication, exactly because they are able to communicate with people in depth1. 
This is remarkably interesting in the educational context and in particular in relation 
to mathematics, a discipline which often shapes individuals’ personal history in 
difficult ways. 
In this sense it was already pointed out (Pesci, 2003 b) that talking about mathematics 
to students through symbolic images, actions, gestures, not typical of the world of 
mathematics but rather of everyday life could promote communication on such a 
subject. Indeed it is well known that mathematics, because of personal beliefs and 
stories, could rationally bring emotional blocks, thus impeding comprehension of the 
simplest ideas and strategies. 
Metaphorical discourse could thus have a further value for mathematics education, in 
addition to those depicted in literature, and propose itself as a mode which could 
indirectly reach, without encountering the eventual block of the “rational mind”, the 
natural “mathematical spirit” living inside any individual. This paper refers to a work 

                                                 
1 The efficacy of metaphors in psychotherapy is well known; see for reference texts by P. Barker and D. Gordon quoted 
in References. 
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on teachers, who are essential actors on the school scene and thus responsible, often 
unconsciously, of conflictual relations between their students and mathematics. 
Teachers’ reflection on their own relationship with mathematics, as developed 
throughout our project, can be certainly considered as a first step of a subsequent 
follow up on their attitude in the classroom. This would go in the direction of a clear 
improvement of communication processes, in favour of both construction of 
mathematical knowledge and development of positive interpersonal relationships. 

3. The experience: a general outline 
As detailed in A. Gallo Selva & A. Pesci (2004), the project “The stage in the 
classroom” involved eight middle school mathematics teachers of Pavia, graduated in 
Biological, Natural and Geological sciences. Four of them were in-service teachers 
while the others did only some supply teaching but did not teach during the 
experience. Their age varied from 26 to 44 years old and all chose freely to be 
involved in the experience. The project developed in 12 meetings, for a total of 40 
hours in a period of  about 3 months. 
We started with some metaphors from which each participant had to choose the fittest 
to describe their own personal relation with mathematics, with reference both to their 
stories as students and their teaching reality.  
The following is a list of metaphors among which participants were asked to choose 
(in case the proposed metaphors were considered inadequate, the teacher could list a 
sixth, personal metaphor) 

1. being in front of a mountain to climb and not having the suitable equipment 
2. entering a jungle, with traps that can open up suddenly 
3. participating in a long marathon 
4. a challenging game with myself or companions 
5. being forced to play a boring game 
6. ………………………………………………………………………………….. 

Starting from the verbal metaphor we then moved to action: everybody has been 
asked to think about an emotion connected to his story with mathematics and express 
it through the use of a coloured balloon with a gesture which narrated in a metaverbal 
mode this emotion and thus “offer” it to the others, creating a dialogue based on 
looks, postures, perceptions, gestures. 
We then proposed the realisation of dialogues where gestures would be connected to 
unusual sounds: the use of natural numbers in order to favour an empathetic listening 
to the other. 
All these steps, so unusual and far from the everyday classroom practice, took a long 
time to be assimilated and always needed moments of discussion and verbal 
exchange.  
We then entered the plot of a mathematical question, the duplication of the square 
(during the 4th and 5th session), asking participants to approach it through a 
cooperative work and using different materials, so as to favour a “creative” and 
personal solution strategy.  
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In this way we recalled the principles of Socratic Maieutics (at the end of the activity, 
teachers were given the text of Plato’s “Menon” related to the considered geometric 
problem): the knowledge derives from one’s own experience and action, the notion 
must never be a starting point but always an individual and gradual discovery 
everyone reaches through his own personal resources (this same principle can be 
found in the grotowskian theatre). 
After a short autobiographical work based on personal photography, we started to 
engage in the actual theatrical work, drawing on all the previous experiences: we 
recalled the metaphors chosen, formed groups based on similar choices and asked to 
dramatize and represent the metaphor chosen by each group. Importance was given 
also to the objects each one had brought with relation to the explored issues, as they 
were symbolic mediation tools related to the emotional impact of each one’s own 
story. After practising with some of the theatrical techniques characterising Playback 
Theatre (Fox J. & Dauber H., 1999), all the work carried out was translated into a 
short representation that, far from being a real theatrical play, was still a visible sign 
of the whole path taken and an instrument to involve a wider audience in the 
experience. 

4. Teachers’ metaphors and their transformation 
The choice of metaphors on one’s own relationship with mathematics as a discipline 
occurred through the questionnaire described in the previous section, during the 
second group meeting and after some moments spent in knowing one another. 
As regards each one’s past as students, the following answers were obtained: 
Filippo, Sauro, Silvia R. choose metaphor n. 4, i.e. “a challenging game with myself 
or companions”; Elena and Laura T. choose the same metaphor but delete the 
expression “or companions” in its formulation. 
Silvia M. chooses n. 5, referred to a boring game, Laura R. chooses n. 1, the 
mountain metaphor and Maria Elena, after marking both n. 1 and n. 4, synthesises 
them in “being in front of a mountain to climb and not having the suitable equipment 
and therefore a challenging game with myself, lost at the very beginning”. 
In the phase of communicating to others one’s own choice, some of the participants 
add a short comment, to better express their feelings. 
Maria Elena, in particular, points out that she tried to put the most negative aspects 
she found in the proposed metaphors together, because she always felt inadequate at 
school and she still does at present. 
Sauro and Filippo underline that they chose metaphor n. 4 mainly because it involved 
the word “game” and not in the sense of “challenge”: the latter plays a role, but the 
main point is the playful and amusing side of mathematics. 
Regarding their situation as teachers, the following answers were obtained: 
Elena, Filippo and Sauro choose metaphor n. 4; Laura R. and Laura T. make the same 
choice, but delete the expression “or companions” from the original formulation; 
Silvia S. in choosing the same metaphor deletes the expression “challenging”; 
Silvia M. proposes the personal metaphor “to experience a new way of thinking”; 
Maria Elena chooses n. 3, related to marathon. 
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The short comments proposed by the teachers aim at outlining individual 
relationships with mathematics in more detail: Silvia M., who had chosen the 
metaphor of a boring game with respect to her past as a student, is now referring to 
mathematical activity as enabling one to experience new ways of thinking and tackle 
procedures, although the latter are not particularly “intriguing”. 
Maria Elena points out that her choice of the marathon metaphor is due to her own 
perception of doing mathematics as a hard and fatiguing activity, but still a positive 
one. She adds that she knows well how it feels not to succeed immediately, but she 
wants to show pupils that “they can do it”. 
As already mentioned, in subsequent meetings these metaphors and therefore one’s 
own relationship with mathematics, were linked to objects (both past and present), 
gestures, actions, stories, improvisation that were regularly solicited by Anna, the 
group co-ordinator for the performing side, or by other participants. 
Particular attention was paid to non verbal languages (for instance proxemics, 
posture, gestures, over-segmental signs of communication, such as tone, timbre, 
volume), to moments of observation, listening to and welcome of others: as meetings 
progressed we could perceive the constitution of a group, almost a new entity 
progressively defined through each participant’s resources and features, made 
available for the constitution of one single organism. 
During the meetings interpersonal relationships became increasingly more friendly 
and everyone seemed to feel comfortable. 
Also concerning the duplication of the square activity (firstly developed through 
either individual work or work in pairs, and then through comparison, sharing and 
comments on proposed solution strategies) everyone acknowledged the relaxed and 
calm working environment: the group showed a real interest in each solution proposal 
and therefore everyone felt positively welcomed by others and perceived him/herself 
as a resource for the overall results of the group. 
Starting from the activities, some of the participants shared personal and not always 
enjoyable memories of their past life, more or less linked to mathematics. 
The case of Silvia M. can illustrate this point. 
During a meeting aimed at the representation of one’s relationship with mathematics 
through a sketch, Silvia M. and Elena attempted to illustrate metaphor n. 5 (related to 
the boring game), chosen by Silvia M. They were arranging a representation in which 
one of them executed some commands sequentially given by the other: in doing this 
Silvia M. meant to highlight the intolerant attitude of the one who was executing 
commands, which were to be given in a peremptory way and not be followed by a 
positive feedback for any executed action. 
In repeating the sketch roles were swapped, gestures were modified in order to 
identify the most meaningful in terms of the representation, suitable words and voice 
tones were sought. During the activity, the relationship with mathematics that Silvia 
M. meant to represent seemed to leave room to a stronger relationship: that with her 
father. At some point she had claimed that the person who gives commands is “a 
precise person, it’s my father” and had added details on this type of relationship, or 

Working Group 1

126 CERME 4 (2005)



rather on what she defined as the “emptiness” of this relationship. The situation had 
clearly evoked very strong feelings and memories but the group was ready to 
welcome Silvia M.’s expressions: indeed she felt comfortable to express her feelings, 
she was aware of the burden represented by her memories, but at the same time she 
was detached, determined to “play” her sorrow on the scene with others. 
The title Silvia M. had to give the sketch with the aim to express her relationship with 
mathematics meaningfully went through a transformation: initially she had chosen 
“psychological pressure” but then, after some meetings, she proposed a simple 
“tasks”, and also her gestures and actions expressed a lower emotional tension. 
In the actual performance, everyone was supposed to communicate verbally in a 
synthetic way their emotion about mathematics to an audience, and move a coloured 
balloon in the air as they liked, before offering it to the audience. In this case Silvia 
M. chose the expression “To me mathematics is experimentation”. The sign of a 
change was thus clear, a change from a memory of personal unease to a constructive 
denotation of the discipline. 
It is not in the intentions of this paper to go into deeper interpretations of what 
happened: however it seems clear that the proposed activity was able to produce a 
resonance in participants, and involved a number of critical aspects, ranging from 
personal to professional and disciplinary ones. 
During the meetings, in sharing reflections about the carried out experiences, Silvia 
M. had repeatedly shown her amazement in understanding the importance of non 
verbal dimension in interpersonal relationships, as able to rouse one’s own lived 
experiences and thus not to be underestimated in communicating with people 
(including the classroom). 
It is interesting to remark that at the moment of choosing a title for the play, Silvia M. 
was the only one who had already thought about it and proposed “More than a 
thousand words”, which was enthusiastically accepted by the others, because it 
captured the central role of the ‘non verbal’ in interpersonal relationships. 

In the three months of shared activity, other visible signs of transformation of 
individual personal relationships with mathematics emerged. 
What follows is the interesting case of Maria Elena.  
As mentioned earlier in the paper, she had expressed her inadequacy towards 
mathematics through the metaphor: “being in front of a mountain to climb and not 
having the suitable equipment and therefore a challenging game with myself, lost at 
the very beginning”. She had repeatedly commented on this feeling through 
memories of her school years, from which a perception of defeat emerged. During 
subsequent meetings she had represented the scene expressed by the metaphor with 
the help of Elena, trying to transfer her feelings of inadequacy and discouragement in 
gestures, actions and facial expressions. In rehearsing, though, representation of these 
feelings became less and less tense, gradually lighter and cheerful. 
During the duplication of the square activity (only known to Filippo among all the 
group members), Maria Elena had preferred to work individually, maybe to test her 
own potential, but it was clear at the beginning that she felt uncomfortable, not sure 
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to be able to find a solution. She had divided the square into four parts through 
segments perpendicular to the sides, then she had joined the midpoints of the 
consecutive sides and observed that the square was thus divided into eight equal 
triangles. After that she had noticed that the “inner” square consists of four triangles, 
the “big” one consists of eight triangles and therefore the latter is double the “inner” 
one. 
Only when she presented her own strategy to the others she could realise and express 
to everybody the role played by the diagonal of the initial square: this diagonal had to 
become the side of the square to be constructed, which was in this way double the 
initial square. Maria Elena’s satisfaction was clear: despite her initial hesitation she 
had managed to find a correct solution strategy. 
When in the end Maria Elena had to choose the words to synthesise for the audience 
her emotion about mathematics through the coloured balloon, she chose “To me 
mathematics is quiet anxiety”, which highlighted how the tension, still present in 
herself (as expressed by the word “anxiety”) was “quiet”, perhaps characterised by a 
higher self-confidence. 
It is also interesting to notice that during the project and in subsequent months Maria 
Elena had attended a course in basic concepts of arithmetic and geometry for 
mathematics teachers who were not mathematics graduates. She regularly attended 
the course, actively participating in it, and she got one of the best grades in the 
assessment of the final examination. 

5. Concluding remarks and prospective developments 
This concluding section aims at commenting on the main aspects of the described 
experience, which certainly need further analysis and deepening, but that seem to be 
promising for those involved in mathematics education and teacher training. 
The use of metaphorical discourse, in the wider sense of the term, in the professional 
training of mathematics teachers is without doubt the most explicit suggestion 
emerging from the described work. 
Mediation of metaphorical discourse in our project was thought and realised at 
different levels: the first phase, i.e. a rethinking of one’s own life story, was carried 
out through an explicit use of metaphors. During the subsequent moments of 
elaboration on one’s emotions and collaborative activities of mathematical inquiry, 
metaphorical modalities were often used and developed according to participants’ 
suggestions: all this occurred through both verbal and non verbal languages, such as 
gestures, images, music, sounds and objects. 
The performance offered to an audience was then a translation, in the artistic 
metaphor, of what the group had elaborated and shared in the experience of common 
reflection, discussion and planning. 
Finally, the whole experience, centred and developed on one’s own personal 
relationship with the taught discipline, mathematics, was an actual metaphorical path 
for a possible follow up in the classroom, in the direction of welcoming both pupils 
and colleagues with particular attention to disciplinary and relational aspects. 
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Experiences with teachers centred on metaphor as an instrument for self reflection 
were widely implemented in Italy, starting from the ‘80s, in disciplines other than 
mathematics: see, for instance “I laboratori di epistemologia operativa” (Laboratories 
of operative epistemology) (1994), developed by D. Fabbri and A. Munari. 
Regarding mathematics teachers, an increasing amount of research studies use 
metaphor to explore teachers’ thinking (see for instance Cooney et al., 1985; Rogers, 
1992; Lim Chap Sam, 1999) but few of them analyse teacher training experiences 
centred on metaphorical discourse. In this context interesting studies have been led by 
Chapman, who pointed out that favouring the expression of convictions  

“in the form of metaphor could help to facilitate teachers’ generation of new 
perceptions, explanations, and inventions in their teaching of mathematics.”  

Interesting suggestions for teacher training can be drawn when he claims  
“the possible importance of generative metaphors that may underlie 
mathematics teachers’ personal story of growth and the possible significance of 
consciously attending to such metaphors to assist teachers in achieving desired 
changes and choices in their teaching.” (Chapman, 2001, p. 240).  

Another feature of the presented project was the importance attached to 
autobiographical activities, referred to teachers’ life story. Narrative of the self 
revived in Italy especially in the last decade, as an important educational modality for 
both students and teachers. Fundamental objectives to be pursued are a positive 
development of interpersonal communication, reflection on the self, 
acknowledgement and revisiting of personal facts and features, increased self-
listening and self-understanding skills and a consequent increased open attitude 
toward listening to and welcoming others (Demetrio, 1996 and 1999, Castiglioni, 
1999). The efficacy of metaphorical discourse in favouring people to narrate their 
own life story is widely acknowledged: it permits the necessary detachment from the 
self (Barker, 1987; Gordon, 1992). 
In the project considerable attention was paid to non verbal languages (graphical, 
pictorial, gestural, …) both in the construction of mathematical knowledge and in the 
development of interpersonal relationships: the objective was to realise that unity of 
mind and body which pedagogues and psychologists suggest as desirable in the 
whole educational path, but which must be especially recovered in adult age 
(Gamelli, 2001; Ruggieri, 2001). 
The innovative nature, at least in Italy, of the proposal of a theatrical project to 
teachers is remarkable. Nowadays theatrical projects variously involving pupils and 
teachers are widespread in our schools, but not equally spread is the proposal of a 
performing experience to teachers, especially one centred on a discipline like 
mathematics, which is hardly experienced as a poetic or artistic clue. 
As a follow up of the described project a new one is being implemented, still centred 
on “actors teachers”’ relationship with mathematics, in a metaphorical key; this time 
a different mathematical subject (polyhedra) has been chosen instead of the 
duplication of the square problem and we aim to a more careful artistic 
implementation. 
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The objectives of the completed project, common to the project being implemented 
with a new group of teachers, can be synthesised as follows: 
- To rediscover concrete, playful, curious and poetic aspects of mathematics 
- To offer an alternative expressive modality to re-interpret one’s everyday 

professional and personal experience creatively 
- To develop a process of reflection, by participants, on their own taught discipline, 

to re-discover their motivations to learn and their cognitive and metacognitive 
resources, in the direction of teachers’ continuing education 

- To favour the acquisition of instruments and modalities of empathetic welcoming 
of individuals (colleagues, parents, pupils) included in collective dynamics of the 
school environment 

- To stimulate a follow up of the experimented path on one’s teaching model in 
relation to one’s pupils, both at disciplinary and relational level 

- To set up an experience that can be enjoyed outside the mathematical context, 
through the presentation of a theatrical play, in order to promote a positive 
approach to mathematics and remove the usual prejudices attached to it, thus 
enacting a process of “humanistic” re-definition of the subject matter. 

The project might address not only participant mathematics teachers, but also other 
trainee and in-service mathematics teachers as well as students from all school levels 
that might be involved, through the fruition of the theatrical event, in related specific 
moments of reflection and debate. 
A wider audience might also participate in the performance, in extra-school contexts 
(theatrical spaces, festivals, …), thus experiencing an approach to mathematics that is 
not exclusively rational but emotionally, aesthetically and creatively involving, in the 
broader direction of promotion of scientific thinking. 
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BUILDING VISUAL STRUCTURES  
IN ARITHMETICAL KNOWLEDGE –  

A THEORETICAL CHARACTERIZATION OF YOUNG 
STUDENTS’ "VISUAL STRUCTURIZING ABILITY (VISA)"  

Elke Söbbeke, University of Essen, Germany 

Abstract: In the process of learning elementary arithmetical mathematics, visual 
representations are used to build efficient and adequate internal systems of 
representation in young students’ minds. But, the semiotic representation must not be 
confused with the mathematical object. Visual representations are signs and symbols, 
which have to be interpreted. In this paper an empirical study is presented, which 
had analysed the conceptual role which a representation acquires in the process of 
children’s interpretation and in how far the learning child succeeded in building 
structures and relations into the visual diagram.  

Keywords: representation, sign/symbol, children’s interpretation, building structures 
and relations into diagrams,  empirical study  
 
1 Theoretical Background 
In the process of mathematics teaching in elementary school, the use of visual 
representations is an important foundation to help young students in building mental, 
internal representations of mathematical ideas. Goldin und Shteingold (2001) 
described „the development of efficient (internal) systems of representation in 
students, that correspond coherently to, and interact well with, the (external) 
conventionally established systems of mathematics” as a fundamental aim for the 
process of mathematics teaching (Goldin & Shteingold, 2001, p. 3).  

But this aim implies a difficult and highbrow task for the teacher: As different 
education studies in mathematics have shown, the intended way from the external to 
the internal, mental  representations is not straight, easy and above all not clear 
(unequivocal) (cf. Lorenz 1998, Schipper 1984). But in contrast to that, in the 
everyday mathematics lessons, a unreflected culture of interaction (for example in 
strong adherence to Bruner’s e-i-s-principle) often causes that such representations 
are used in a standardized and schematic way, to prevent all ambivalence (cf. Voigt 
1993, Steinbring 1994). In traditional teaching, the use and the function of 
representations are reduced to a methodical aspect (vgl. Jahnke, 1984, p. 39), through 
which the special epistemological quality of mathematical knowledge and the 
symbolic character of representations are ignored. 

Mathematics, as a science of patterns, relations and structures, cannot be grasped or 
learned in an empirical way. The only way of gaining access to mathematical 
knowledge is in using signs, symbols, or visual representations. The mathematical 
ideas, as “theoretical ideas, are not things, which could be conveyed as completed 
products. The mathematical subject consist of relations between things and not in the 
objects and its properties. Therefore, mathematical thinking (…) has to be visualized, 
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in order to represent such relations” (Otte, 1983, p. 190; translated). Representations 
are not mere images, but symbols. They contain complex relations, which the 
learning child has to comprehend in two ways: taking into account the overall 
structure, and simultaneously its multi-faceted individual aspects. In an interactive 
process the young students have to construe relations into the diagram, and by way of 
construing meaning into these new relations, the mathematical knowledge has to be 
developed in a rather abstract way (cf. Steinbring, 2005).  

Connected with the epistemological function of mathematical representations, there is 
a special quality in the relation between the established ideas and systems of 
mathematics and their visual representation. On the one hand there is the 
mathematical knowledge, which has to be represented in diagrams, materials, or 
symbols. On the other hand, the semiotic representation must not be confused with 
the mathematical object. Raymond Duval describes this as the „paradoxical character 
of mathematical knowledge“: „(...) there is an important gap between mathematical 
knowledge and the knowledge in other sciences such as astronomy, physics, biology, 
or botany. We do not have any perceptive or instrumental access to mathematical 
objects, even the most elementary (…). We can not see them, study them through a 
microscope or take a picture of them. The only way of gaining access to them is using 
signs, words, or symbols, expressions or drawings. But, at the same time, 
mathematical objects must not be confused with the used semiotic representation. 
This conflicting requirement makes the specific core of mathematical knowledge” 
(Duval, 2000, p. 61). 

Therefore visual representations are signs and symbols, which have to be interpreted. 
To build new mathematical knowledge it is necessary to disregard the concrete 
properties and to examine the relations, structures and the theoretical ambivalence 
which a mathematical representation contains. The main interest in the research of 
this author’s empirical study is in this area of changing interpretation, between an 
empirical view on concrete objects and an abstract view on relations and structures. 
 
2 Method of the Empirical Study  
2.1 The Input of Data 
Within the scope of the study, the theoretical construct of „Visual Structurizing 
Ability (ViSA)” has been developed, as a central research concept. It reflects the 
theoretical foundation and characterizes the dimension of ability to build – in an 
active process of interpretation – structures and relations into a visual representation. 

The main interest of research pertains to the role which the representation acquires in 
the process of children’s interpretation and to the relations and structures which the 
learning child succeeds in building into the visual representation. Therefore, 
processes of interpretation had to be initiated. The data input had been carried out 
with clinical interviews (cf. e.g. Hunting 1997), which had been held with 15 children 
age 6 to 10. In three different groups of tasks the children had been asked to find 
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calculations which correspond to a presented diagram, or, on the other side, to draw a 
corresponding diagram to a presented calculation. In a third group, the children 
solved tasks in which it was useful and effective to build structures into the diagram.1  
 
2.2 The Analysis of Data  
An important orientation of analysis is, that representations are not self evident and 
explain automatically a new mathematical subject, but in principle constitute signs 
and symbols for the learning child. From this perspective, graphic representations are 
much more than images, they are symbols (cf. Jahnke 1984, p. 35), which have to be 
interpreted. Therefore during a learning process, a representation can hold two 
different roles: At first, it can constitute a familiar context, which helps the child to 
comprehend new mathematical subjects. At second, the representation can also be a 
new symbol for the child, which has to be interpreted with contexts that are more 
familiar to him (for example, arithmetic contexts). 

In the analysis of the clinical interviews, the focus lies on the culture of the symbolic 
use of such media, and on the fundamental relationship between the child, as a 
psychological and social subject, the representation, as an object of interaction and 
the child’s growing mathematical-cultural concept of interpretation. In this process of 
mediation and active interpretation there can be found many different aspects of  
empirical and/or structural appreciation. To do justice to both of these perspectives, a 
new method of analysis has been developed, which implies two complementary 
qualitative instruments of analysis: on the one hand an epistemological method, using 
Steinbring’s epistemological triangle (cf. Steinbring 2005), on the other hand a 
system of detailed categories of analysis. 

1st Instrument: „The Epistemological Triangle“ 
Mathematical knowledge has to be represented with 
signs and symbols (cf. section 1). On the other hand 
these systems of signs and symbols need familiar 
contexts of reference, to receive meaning (cf. 
Steinbring 2005, p. 24f.). Seen in an 
epistemological view, the building of new 
mathematical knowledge is an active interpretation 
of the relationship beween these symbols and their 

contexts of reference. Mathematics, with its stock of concepts, terms and rules, grown 
in a social and historical process, cannot be comprehended in an exclusive individual 
process, but only in an interactive and social process of building sense (cf. 
Steinbring, 2005). The epistemological triangle is an instrument to describe and 
analyse this scope. 

                                                 
1  Altogether every single child had been working on ten different tasks. 
 

   

Object / refe-                              Sign /             
rence context                              symbol                                                      
 

                              Concept   
fig. 1: The epistemological 
triangle ( cf. Steinbring 2005) 
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In this empirical study, the epistemological triangle has been used to analyse 
systematically the conceptual role which the representations acquire in the process of 
children’s interpretation. It has been used to examine if, when and in which way the 
representation is a familiar context or new symbol for the child.  

2nd Instrument: „The Model of Categories of Analysis“  
In a second step, a detailed model of categories has been reconstructed from the data 
of the clinical interviews. The categories have been the primary foundation to analyse 
in how far the learning child succeeded in building structures and relations into the 
visual diagram.  

The aim of this study is not  to prove an existing hypothesis, but – from an 
explorative view – in generating a (new) theory of “Visual Structurizing Ability 
(ViSA)”. Considering this aim and the relevant literature, a reconstructive and 
hypothesis-generating method has been chosen, which had been developed from the 
sociologist Bohnsack (cf. Bohnsack 2000). The analyses aim to reconstruct young 
students’ strategies in using, interpreting, and structurizing visual representations. 
Through systematic comparative analyses, it was possible to define different 
categories of ViSA. This has been the first foundation to generate the new theory of 
ViSA. 

In the following diagram the model of categories of ViSA is presented. The single 
categories describe fundamental and important characteristics of the children’s 
individual strategies. In the model two main groups of abilities are separated: 1st 
group: “Visual Structurizing”, 2nd group: “Determining numbers”. In both groups 
there is a further separation.  

In group 1: the categories list on the left side describe the type of elements, which the 
child builds into the diagram. For example, the child uses “single elements”, or 
“individual structures” or “intended structures”. The “intended structures” 
correspond to structures, which are layed out in the didactical representation; in 
contrast the individual structures are construed in an individual manner, which show 
no relation to intended structures of the diagram. The column on the right side shows 
categories, which describe the way the children use their elements. For example, the 
child uses elements as “concrete objects” (without building any relations between 
them), or uses “relations” between elements, or uses “re-organisations”.  

Visual Structurizing 

Elements of Interpretation Way of Using the Elements of Interpretation 

Building single elements Use as concrete objects 
Building individual structures  Use with a very separating character 
Building intended structures Use with partial overlaps 
Building substructures  Use with partial gaps 
 Use of parts / sections of diagram 
 Use of structural relations   
 Use with coordinating elements 
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 Use with re-organisation / re-interpretation 
elements 
 

Determining numbers 

Counting numbers Grasping numbers 

Counting in an unstructured way Grasping simultaneously  

Counting in a structured way Grasping quasi-simultaneously  

Counting in steps Grasping on the basis of structures 

Counting with the individual structures  

Counting with the intended structures   

Counting with the substructure   

      Fig. 2: Model of categories of ViSA 

 
3 Results 
Considering the carefully and detailedly analysed interviews (with the use of the 
categories of analysis) and the relevant studies in the literature, it was possible to 
distinguish different qualities of the childrens interpretations. In this process four 
types of childrens interpretations could be separated. These different qualities are 
pointed out and described in the “Four Levels of Visual Structurizing Ability”: 

 

 

 

 

 

This model of four Levels of ViSA is one of the main results of the empirical study. 
The four levels can been seen as an accentuation and reduction to the most important 
characteristics of ViSA. From this perspective they allow at the same time a 
concentration and overview of ViSA in the children’s different phases of interpreting 
a representation.  

But an important orientation for using this model has to be pointed out: The four 
levels must not be comprehended as determined levels in a genetic way. Children do 
not have to go through them in a fixed order. The assignment of a child’s 
interpretation to a level of ViSA does not identify its abilities in a generalised way, 
but it draws a differenciated image, which shows the spectrum of the child’s 
appreciations to a representation. Therefore, the assignment must always be seen in 
relation to the specific context of task and to the specific phase of interpretation 
(beginning or end of interpretation process), in which the child acts. 

In the following section the most characteristic aspects of the four levels of ViSA are 
described and explained with exemplary and short parts of the clinical interviews. 

Level I:  Level of concrete and empirical Interpretation 
Level II:  Level of Mediation between partial Empirical Interpretation and first Structural 

Interpretation  
Level III:  Level of Structural Interpretation with Increasing and Flexible Use of Relations and Re-

Organisations. 
Level IV:  Level of Structural and Relational Interpretations, with Extensive Use of Relations and 

Flexible Re-Organisations 
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Those categories of analysis, which are a characteristic and essential component, are 
emphasized in italic. 

Level I:  Level of Concrete and Empirical Interpretation 
Interpretations on this level are exclusively determined by empirical approaches. The 
child uses only single elements, without building any structures into the 
representation. There is a dominating view on concrete objects, which have to be 
classified with their external properties. On this level you can find a very separating 
character. Elements can be used with partial overlaps or partial gaps. Partly only 
sections of the diagram are taken into consideration. The single elements, are isolated 
and will not be coordinated or set into structural relation. There is no structural re-
organisation or re-interpretation.  

In the present study no interpretation has been assigned to this first level of ViSA. 
But in an earlier paper-pencil-
test, that had been used as a pre-
study, some of the childrens 
solutions correspond to this first 
level. One example is shown in 
figure 3.  
 

Fig. 3 

Level II:  Level of Mediation between partial Empirical Interpretation and 
first Structural Interpretation 

In interpretations on this level, the child moves away from the concrete aspects of the 
representation and focuses increasingly on abstract relations and structures. Beyond 
building single elements into the diagram, the building of individual and intended 
structures can be found. But the elements of interpretation often stand isolated as 
concrete objects, without building rich relations between them. Like on the first level 
you can find a very separating character. Elements can be used with partial overlaps 
or partial gaps. Partly only sections of the diagram are taken into consideration. 

On the second level you find an alternating use of elements with no coordination, no 
relation and no re-organisation and, on the other hand, with coordination, relation 
and re-organisation. Therefore in interpretations on this level there is a typical 
mediation between partial empirical interpretations and first structural interpretations. 
But often the children’s interpretations are rather unflexible, and they do not grasp 
the representation as a multi-faceted structural diagram. Such level of interpretation 
could be found in the following interview scene: 
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Jennifer finds the calculation „1+5=6“ to the numberline Z12 

In the interview Jennifer has been asked to find a 
arithmetica task, which correspond to the given diagram. 
Jennifer notes the calculation „1+5=6“ and explains her 
decision: 

In Jennifers interpretation 
the arrow constitutes no 
structural element of the 
representation. It is used 
as a „meta-sign“, which 
brings special elements of 
the representation out and 
isolates them (6 marks 

under the arrow), in order to build the calculation. Jennifer does not use the whole 
representation, but concentrates on single and concrete aspects, which can be 
grasped in an empirical way. But between these objects, she builds individual 
structures (“1” and “5”) and uses elementar relations and coordinations. There is no 
re-organisation of structures. 

Level III:  Level of Structural Interpretation with Increasing and Flexible Use 
of Relations and Re-Organisations. 

In interpretations on this level, individual and intended structures and relations can be 
identified. On this occasion different and multi-faceted aspects of the representation 
are recognised. In comparison to level II, the structures are manifoldly coordinated 
and more flexibly re-organised. The structures are no longer isolated, but seen as part 
of the whole and separated and put together in a structural way. You allways find the 
use of structural relations, coordinations and re-organisations of elements. In all, 
this level III of ViSA can be characterized by the combination of building structures 
with the increasing use of relations and re-organisations. Level III could be identified 
in the following interview-scene: 

Jennifer interpretes the mark „S11“ in  the numberline Z3 

In a first interpretation, Jennifer has named the mark “S11” 
as the number „11“. The interviewer calls Jennifers 
attention to the missing inscription under the numberline 
and asks her, if this mark (S11) could represent another 
number as well. After that, Jennifer developes different 
                                                 

2 To describe the diagram, the marks in the numberline have been numbered from left (beginning at 
“-1”), to right: S(-1), S0, S1, …, S21. 
 

14 Je So here, where the, where that [runs her finger over the 
arrow’s beginning] other black bow is, there… 

15 I                                                                      Yes. 
16 Je                                                                          ....I see the one 

[runs her finger down to mark S4]. 
   
24 Je There I can [points to mark S5] easily count 1, 2, 3, 4, 5 [points 

to the marks S 5, 6, 7, 8, 9] 
25 I                                                                                  Mhm. 
28 Je                                                                                              

... and then I can calculate one plus five is six [points to the 
scratchpaper on the interviewpaper]. 

 

 

 
Fig. 4: numberline Z1 
 

  
  
 0         10         20 
 

       �                                                   
 

 
 
 
 
 

Fig. 5: numberline Z3 
 

 
 
 
 
 
 

       �                                                  
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interpretations of the mark „S11“ and designates it as the numbers „11“, „101“ und 
„1001“. She explains her solution as follows:                       

146 Je Yes, because that really could be everything [runs her finger from left to right below the 
numberline-diagram]. It could, eh, because there really is only the 10th-series [points to 
mark S0, moves the pencil from mark S0 to S5] and here the 100th-series and perhaps the 
1000th-series. 

147 I Mhm. 
148 Je So, the 1000th -series it really could not be.  
149 I Why not? 
150 Je Tshe, it really could be everything [points to the numberline]. So, but you don’t know it, 

if there are no numbers placed [points to the numberline]. 

In comparison to Jennifers’s first interpretation „1+5=6“ (cf. level II) she now 
developes in this phase multiple re-interpretations by building different intended 
structures into the diagram. Her interpretations are no longer tied to concrete objects, 
but the marks in the diagram represent different numbers, which cannot immediately 
be seen or grasped in an empirical way. 

Level IV:  Level of Structural and Relational Interpretations, with Extensive 
Use of Relations and Flexible Re-Organisations 

On this level, only intended structures can be identified, which are built in the 
process of interpretation. All these interpretations can be characterized by a very 
structural and relational view on the representation, by building extensive relations 
and coordinations between elements and using extensive, flexible re-organisations. 
An example is shown in the following interview scene:  

Katrin developes a new strategy of determining number of triangles3 

In the first phase of interpretation Katrin has built 
individual structures into the diagram and counted the 
number of triangles using single elements (triangles). In 
the next phase she developes an new strategy, by 
structurizing the diagram into an interiorzone and a border 
zone. Further, she builds squarestructure-elements into the 
interior zone, which contain in each case four triangles. 
Katrin builds manifold relations between these elements 

and coordinates them in an effectiv way to determine the number of triangles in the 
interior zone. After that, Katrin coordinates the number of “border triangles” (“12”) 
and “interior triangles” (“36”) to acquire the number in the whole diagram (“48”). 

14 Ka Mhm, if you, if you here four [moves her pencil circulary over square Q1 (Fig. 6)] 
15 I                      Mhm. 

                                                 
3 This interview task had been developed (with little alterations), following the “Tiled Floor 
Problem” by Marja Van den Heuvel-Panhuizen (cf. 1996, p. 71). 

 
 
 
 
 
 
Fig. 6: Interviewpaper 
„How many triangles?“  

         �                                                   
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16 Ka 
 
 
 
 
 
 

[moves the pencil over the interiorzone, points the pencil on 
the squares Q3,6,9,8,5,2,1,4,7, while very quietly whispering] 
sixn, that are 36 [moves the pencil over the diagram]. 
 
 
Fig. 6:  Diagram with numbering  
 of squares in the interiorzone (Q1 – Q9) 

17 I Mhm.  
18 Ka And those outside are 12 [points over the left below border of the diagram] 

 
 
4 Resumé  
The combination of the detailed two-stage analyses with the classification of the 
visual structuring ability in form of the four described levels, enables to demonstrate 
the rich spectrum, in which young students’ processes of interpretation of 
representations can take place. Within this spectrum a manifold and great variety of 
approaches and interpretations could be identified: 

1.) This richness and variety refers on the one hand, to the role of sign/symbol and 
reference context. The reference context is not given a priori, in form of an obviously 
“readable” or “clear” meaning of the diagram, but – in contrast to that – it is designed 
and re-organised by the learning child, in the course of the process of interpretation. 
The process of interpretation must be understand as a mediation between the 
historically and socially emerged form and structure of the signs/symbols and the 
individual interpretation of the meaning of the signs/symbols. In the progressive 
development of mathematical knowledge, especially through the mediation between 
the reference context and the sign/symbol the new mathematical concept developes, 
by assigning interpretations from a familiar reference context to a new sign/symbol.  

2.) On the other hand, this variety of young students’ approaches to the interpretation 
of a representation, implies that such media – even when used in the mathematics 
teaching – are partly still unexplored, and have to be subjected to a new process of 
interpretation. In this regard, more than a half of all interpretations (in the research 
study) could be assigned to the second level of the ViSA. This level has to be seen as 
a level of transition, in which no longer purely empirical approaches dominate, but 
first structures are build. It becomes clear, that the children’s abilities of 
interpretation on this level, contain a substantial potential, which is often not noticed 
in an adequate manner in everyday mathematics instruction in the primary school. 

The results of the study establish an important and deeper insight into the 
fundamental relationship between the child, as a psychological and social subject, the 
representation, as an object of interaction and the young students developing 
mathematical-cultural concept. On this basis it is essential for the didactical use of 
representations, to reflect carefully the complex conditions, which had been worked 
out by the four levels of ViSA, and in the same way, the children’s abilities of visual 
structurizing, in order to add specific supporting measures. The results of the study 

1 2 3 

4 5 6 

7 8 9 
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emphasize that such a support must be more than “learning in a traditional sense” or 
“memorizing given interpretations”. The use of representations has to be seen as an 
epistemological, social and interactive demand. By the way, this view on 
representations should initiate and enable the children to deal actively with the 
theoretical ambiguity, with structures and relations in a representation. Thus, a new 
aspect for the didactical use of representations is shown: Not only for the learning 
child it is a special requirement to handle and interprete a representation. In fact, the 
organization of this handling, is a very special challenge for the teacher, because it 
requires an new attitude, regarding the ambiguity of such media. 
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Abstract: Grundvorstellungen, shortly GVs, are mental models of mathematical 
concepts which are important for serious kinds of mathematical thinking. 
Investigations into the development of GVs and their role for the mathematical 
achievement of students are combined with many methodological and conceptual 
problems. On the basis of a large scale longitudinal project we (1) describe the role 
of GVs for the process of mathematical modelling, (2) discuss problems of test 
construction, and (3) report on some preliminary results concerning the development 
of modelling competency during the first two years of secondary school (11-13 year-
olds).  

Keywords: Grundvorstellungen, mental models, mathematical literacy, long term 
studies, large scale assessment  

 

On the Concept of Grundvorstellungen 
Experiences both with lessons and empirical research show that essential reasons for 
some serious problems of mathematical understanding are caused by conflicts 
concerning the intuitive level (cp. Fischbein, 1987 or 1989). Essential reasons of 
these problems are based in the fact that often mathematical concepts and symbols 
are filled by students with a totally different meaning from what is intended by the 
teacher. In order to counteract these problems, different concepts of the generation of 
"mental models" have been developed which emphasize the constitution of meaning 
as a central aim of mathematics teaching. In Germany mental models which are 
carrying the meaning of mathematical concepts or procedures are called 
Grundvorstellungen, shortly GVs. 

Concepts of GVs have a long tradition in the history of mathematics education in 
Germany, and there is also much actual research on GVs concerning all school grades 
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(see for more details vom Hofe, 1998, and Blum, 1998). Naturally, such concepts are 
not restricted to the German speaking area, but can be found in many other countries 
as well (cp. for example the concept of “intuitive meaning” (Fischbein, 1987), “use 
meaning” (Usiskin, 1991) or “inherent meaning” (Noss, 1994).   

In mathematical education research the term GV is used both in a prescriptive and a 
descriptive way: GVs as a prescriptive notion describe adequate interpretations of the 
core of the respective mathematical contents which are intended by the teacher in 
order to combine the level of formal calculating with corresponding real live 
contexts. In contrast, in descriptive empirical studies the term GV is used also as a 
descriptive notion to describe ideas and images which students actually have and 
which usually more or less differ from the GVs intended by mathematical instruction.  

Examples of elementary GVs: 

- Subtracting as (a) taking away, or (b) supplementing, or (c) comparing; 

- Dividing as (a) splitting up or (b) sharing out. 

- Fractional number as (a) part of a whole, or (b) operator, or (c) ratio. 

GVs can be interpreted as elements of connection or as objects of transition between 
the world of mathematics and the individual world of thinking. In this context 
“generation of GVs” does not mean sampling a collection of static mental models 
which are valid forever. Quite the reverse, the generation of GVs in the long run is a 
dynamic process in which there are changes, reinterpretations and substantial 
modifications. Especially if the individual is going to be involved with new 
mathematical subjects, she or he will have to modify and extend her or his system of 
mental models, otherwise GVs which have been successful for so long could become 
misleading “tacit models” (referring to Fischbein, 1989) when dealing with new 
mathematical subjects.  

The generation of GVs is especially important for the mathematical concept 
development, characterising three aspects of this process:  

− constitution of meaning of mathematical concepts based on familiar 
contexts and experiences, 

− generation of generalised mental representations of the concept which 
make operative thinking (in the Piagetian sense) possible, 

− ability to apply a concept to reality by recognizing the respective structure 
in real life contexts or by modelling a real life situation with the aid of the 
mathematical structure. 

Thus the generation of a dynamic network of GVs is an important prerequisite for the 
development of mathematical competence as a whole. Without GVs however 
mathematical operation becomes a lifeless formalism which is cut from the areas of 
application and reality. 
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Because of their mental nature, it is naturally difficult to explore student’s GVs by 
empirical research and there are many theoretical and methodological problems of 
getting insight into student’s mental models. But regardless to these problems the 
development of working methods for empirical based analysing of mathematical 
thinking is an important issue of mathematics education. In the following we 
introduce a longitudinal study which is conceptually based on the idea of GVs. 
Furthermore we will elaborate a little more the role of GVs for mathematical 
modelling. 

 
Design of PALMA 

TIMSS and PISA have documented considerable differences in students’ 
achievements in mathematics, which lead to lively discussions concerning the 
effectiveness of the teaching of mathematics in school. However, these studies have 
some serious deficiencies which only partly explain the causes for differences in 
achievement. Studies like TIMSS and PISA are essentially producing a descriptive 
system monitoring concerning specific measuring moments and age groups. But due 
to their descriptive, cross-sectional design, they cannot provide insights into the 
mathematical achievement development which has led to the stated results, nor into 
the impact of corresponding GVs. Especially these points, however, are important in 
providing causes for the identified achievement deficits and evidence for possibilities 
for the improvement of classroom practice. 

Thus the aim of the research project PALMA (Project for the Analysis of Learning 
and Achievement in Mathematics) is to pursue longitudinally students’ mathematical 
achievement and its conditions. Essential aims are (1) the analysis of mathematical 
achievement development and corresponding GVs from grade 5 to 10, (2) the 
analysis of causes of this development, and (3) providing hints for the improvement 
of teaching and learning of mathematics in this age group. In addition to 
mathematical achievement variables, we assess important psycho-social 
characteristics as potential causes for differences in achievement through students’ 
self-reports as well as information on family background and instructional processes 
through parent and teacher questionnaires, and we have interview sessions with 
individual students. 

The basic sample of PALMA encloses N=2070 students in 83 classes, their parents 
and mathematics teachers. The first survey took place in summer 2002. In 2006, our 
student population will be equivalent to the third PISA wave (see fig. 1). 
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Figure 1: Project Design 

 

In this paper we would like to discuss briefly some methodological and conceptual 
questions of mathematical achievement development and provide some first results of 
PALMA. Concerning the psycho-social topics we refer to Pekrun et al., 2002. We are 
now concerned especially with the following questions: 

What is the role of GVs for the process of mathematical modelling and for 
mathematical literacy in general? 

To what extent can we get insights into characteristics of students’ achievement 
development and its problems? 

What results for improving teaching and learning of mathematics can be expected? 

 
Conceptual Basis 

In PISA, basic mathematical education is described as ‘mathematical literacy’ 
(OECD, 1999) which emphasises the role of conceptual understanding and 
meaningful application of mathematics in contrast to mere algorithmic calculating 
and formula manipulating. Dealing with mathematics in that way stresses the 
importance of modelling as a mayor mathematical competency. The following figure 
simplistically illustrates the typical steps of a modelling process and shows its cycle 
character (see fig. 2); for more details see Blum, 2002. 

When carrying out this process, translating between the real world and mathematics 
is a main mathematical activity, for example finding mathematical concepts or 
procedures which represent a given real life context on the mathematical level or 

Working Group 1

CERME 4 (2005) 145



interpreting what a mathematical solution means for the real world situation. 
Therefore GVs are needed which carry the meaning of mathematical notions and 
procedures and so enable the student to move mentally between mathematics and 
reality (cp. Freudenthal, 1983). The generation of a linked-up system of appropriate 
GVs is therefore a major precondition for successful mathematical modelling in the 
sense of mathematical literacy.  

 

 
Figure 2: Modelling Process 

 

For our long term study we designed test instruments which are conceptually based 
on the idea of mathematical modelling and the involved activation of GVs. To get 
insights into the development of the modelling competency of students, we 
constructed series of items which progressively require modelling activities 
concerning the topics of arithmetic, algebra, elementary functions and geometry. In 
addition to this, we also included series of items which can be solved by mere 
formula calculating without any GVs and without any thinking about the meaning of 
the involved concepts or procedures (“technical items” in the sense of Neubrand et. 
al. 2001).  

Two examples, one of each kind: 
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(1) Kevin wants to buy new sport shoes for 80 �. He has already saved 3/10 of the 
price. How much more money does he still need to buy the shoes? 

(2) Calculate:  �
�

�
�
�

� −⋅
5
2

2
1

3
1  

In example (1) GVs of subtraction (most likely supplementing) and fractional 
numbers (as operator) are needed. In example (2), however, mere algorithmic 
knowledge of multiplying and subtracting of fractions is sufficient. 

We are convinced that serious problems of mathematical achievement development 
are caused by an insufficient growth of modelling competency and corresponding 
GVs during secondary school. We furthermore assume that many students turn too 
frequently to formula calculating which is one of the reasons for difficulties with 
applied mathematical problems.  

 

 

Methodological Considerations and First Results 
To provide detailed development data, test instruments are necessary which are able 
to assess mathematical achievement development (1) with respect to different levels 
of mathematical competence and (2) in different subgroups. Furthermore the test 
should (3) include the main mathematical topics over grades 5 – 10. 

For this purpose we constructed a scalable test instrument, referring to the 
dichotomous Rasch model (Embretson and Reise, 2000), which operates on three 
levels: 

• Level 1: A master score (based on the whole item system) documents the global 
mathematical achievement. 

• Level 2: Subscales (based on item groups) are used to describe the development in 
different topics and levels of competence. 

• Level 3: Detailed item analyses give insights into the development of specific 
abilities including the relevant GVs.  

To include the main mathematical topics of grades 5 – 10, a developed grade-specific 
instrument is used (vom Hofe et al., 2002), consisting of grade specific subtests 
which altogether form the main test. Basis of the test design is Multi-Matrix-
Sampling with anchor-items. Altogether a pool of 105 items, tested in various field 
studies, is used. 

The multi-matrix-sampling used corresponds to the prerequisites of the dichotomous 
Rasch model which allows the measurement of achievement within and between the 
grades. Following the Rasch model, there is one parameter for each item and there 
are grade-specific parameters for each student. These parameters of ability are a 
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characteristic feature of assessing achievement: they characterise the level of 
mathematical literacy at each grade (for details see Kleine, 2004). 

Our test instruments have been evaluated during a period of two years in two field 
studies (N1 = 720; N2 = 1683). Up to now (January 2004), we have data from the first 
two waves at our disposal, so we can only give an example of the development 
analysis concerning grades 5 and 6. To illustrate the different measuring levels of our 
test instruments we first give some data concerning the general achievement 
development regarding different school forms and then refer to sub-scale data 
concerning the development of modelling competency vs. calculating competency.  

On the global achievement level referring to the total sample we recognise after 
standardisation a significant middle increase of more than half a standard deviation in 
general (∆θ  = 58.9, t (1817) = -38.46, p<.001) (norm of the sample: 1000, 100θ = σ = ). 
To inspect the development in the different German school forms Gymnasium (High 
Track), Realschule (Medium Track), and Hauptschule (Low Track), we observe the 
expected sequence of the middle abilities between these school forms at both 
measuring times.  

The ability increases around two thirds of a standard deviation at the Gymnasium 
whereas at the Realschule and the Hauptschule it is only around half a standard 
deviation.  

Let us now have a look at the sub-scale data concerning modelling competency vs. 
calculating competency: Figure 3a shows that we have an increasing development in 
both kinds of competence from grade 5 to 6 regarding to the subgroup ‘Gymnasium 
total’, but we also see that calculating competency increases substantially more than 
modelling competency (∆θ calculus = 74.6; t (720) = -22.038, p<.001; ∆θ modelling = 
18.9; t (720) = -5.121, p<.001). This result is in harmony with our hypothesis that 
conceptual thinking is replaced increasingly by algorithmic rule application during 
secondary school. 

If we now look at specific Gymnasium classes we can identify class effects which 
can be illustrated in specific development patterns. A typical pattern which can be 
assumed as extremely problematical is shown in figure 3b: in the Gymnasium Class 
012 the calculating competency increases significantly while the modelling 
competency decreases (∆θ modelling = 5.40, t (13) = 0.188, n.s.). Even more extreme 
patterns indicating a drifting apart of modelling and calculating competency can be 
found when analysing the development of specific students. Concerning the different 
class patterns, effects of different teaching and learning methods are obvious. 
Currently we are analysing the correlations between these class effects and other 
variables of the learning environment.  
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To take a deeper look at the deficits of this modelling competency stated in the 
quantitative approach more concretely, additional interviews were carried out on a 
subgroup of students (N=36) with selected items of the quantitative test. The 
conceptual focus of these interviews was laid on fractions and proportions which is 
the main theme of mathematical education at grade 6 in Germany and which 
represents a main topic of the quantitative test. These qualitative studies explore in 
detail which kind of misconceptions correspond to the deficits. The results show that 
a major reason for the insufficiency in modelling activities concerning fractions and 
proportions can be seen in inadequately developed GVs. A typical kind of mistake is 
the wrong transfer of intuitive assumptions from the natural to the fractional numbers, 
e.g.: 

- The concept that the result of multiplying fractional numbers is always 
bigger than the factors. 

- The assumption that every fractional number has a well-defined smaller and 
a bigger neighbour with no number in between. 

On the basis of the data currently available we have strong evidence that the 
insufficient increasing of modelling competency is caused to a large extent by deficits 
in the generation of GVs concerning the new mathematical topics in grade 6, 
especially fractions and proportions (vom Hofe and Wartha, in press).  

 

 
Figure 3: Development of competency in modelling and in calculation 

a) Gymnasium total b) Gymnasium Class 012 
(Norm of the sample: 1000, 100θ = σ = ; wave 1: grade 5, wave 2: grade 6) 
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Outlook 
The results shown above have to be replicated longitudinally in order to learn more 
about true cause-effect relationships. It is an open question whether the problematical 
developments of grade 5 and 6 will continue to cause a rising gap between modelling 
and calculating competency in specific classes. We expect effects, particularly those 
concerning teaching processes, to cumulate over the years. 

We expect our work to lead to different perspectives concerning learning and 
teaching mathematics at school: (1) For the development of standards and curricula, 
we hope to provide the empirical background for questions of structure and the cross-
linking of mathematical topics. (2) The results of mathematical competency in 
fractions and proportions on the class- and individual-level show the necessity of new 
ways of teaching and learning on the basis of a GV-grounded access. Currently we 
are constructing material for teachers and students for this purpose. (3) Especially 
teachers need more diagnostic competence to promote the development of GVs and 
to thwart misconceptions which constrain the further progress in applied 
mathematics. On the base of our data we are developing special modules for teacher 
education which can support competence in analysing students’ strategies and 
mistakes.  

Our ultimate goal is to give tangible recommendations for the development of 
mathematics curricula and for the improvement of the instructional, motivational and 
emotional conditions of mathematical learning environments. 
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A DYSLEXIC CHILD’S STRATEGIES AND IMAGES IN 
ARITHMETIC: A LONGITUDINAL STUDY  
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Abstract: This paper aims to investigate the strategies and images of a dyslexic child 
in arithmetic, and how these change from the age of seven to ten. The study focused 
on the child’s strategies and images while dealing with simple arithmetical tasks of 
addition and subtraction. The results suggest that as the child grew older he moved 
from counting procedures which were supported by the use of physical or imaginistic 
counting objects to a more abstract way of thinking. However, as sums became more 
difficult the child disregarded the more relational characteristics of the numbers and 
fell back to his physical and imaginistic counting procedures.  
Keywords: arithmetic, images, representations, dyslexia 
 
INTRODUCTION 
This paper aims to investigate the development of the strategies and images of a 
dyslexic child when dealing with verbally posed simple arithmetical tasks of addition 
and subtraction, at two different ages.  
According to the British Dyslexia Association (B.D.A.) (2004), dyslexic children 
often face difficulties when dealing with simple arithmetic. Many researchers have 
studied dyslexic children’s strategies and difficulties in arithmetic across elementary 
education (Geary, Hamson & Hoard, 2000; Jordan & Hanich, 2003). Recently, a 
connection between dyslexic children’s arithmetical strategies and their images was 
suggested (Xistouri & Pitta-Pantazi, 2003). However, until now, no piece of research 
has studied a dyslexic child’s development of arithmetical strategies and images in 
mental arithmetic. This paper argues that the images and strategies a dyslexic child 
projects at different grades of elementary education are qualitatively similar. 
However, these strategies and images do not facilitate his understanding in 
arithmetic.  
DYSLEXIA AND ARITHMETICAL UNDERSTANDING 
Dyslexia is a person’s inability to comprehend symbolic material (Stasinos, 1999), 
which may be observed in many aspects of a person’s life, including mastering and 
using numerical notation. The most common characteristics of dyslexics in 
mathematics are: 1) slowness in calculations, 2) tendency to relay on finger counting, 
3) confusion when counting back, 4) difficulty in mental calculations, written 
algorithms and direction while executing calculations, 5) difficulty in memorising 
procedures, and 6) tendency to reverse symbols for example 21 seen as 12 (B.D.A., 
2004). It should be noted that not all these characteristics appear in all dyslexics or at 
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the same extent. Dyslexics do not comprise a uniform group, but different people can 
have different combinations of these characteristics (Miles & Miles, 1993).  
Due to their difficulties in mathematics, dyslexics develop strategies in order to 
overcome their obstacles, which arise from slow memory-recall (B.D.A., 2004). The 
most common strategies amongst dyslexic children are counting strategies. 
According to Garnett (1992) and Geary (1993), dyslexic children tend to over-rely on 
counting strategies and commit more errors than their peers. The strategies of 
automatic retrieval and derived fact are less often encountered amongst dyslexics.  
Recent longitudinal studies by Geary et al. (2000) and Jordan and Hanich (2003) 
suggest that children with both reading and mathematical disabilities (MD/RD) – 
such as dyslexia – performed lower than their average normal peers. Geary et al. 
found that children with MD/RD reduced their procedural and retrieval errors from 
grade 1 to grade 2. However, both studies seem to converge to the fact that retrieval 
deficits remain a strong characteristic in these children’s achievement. Thus, fact 
retrieval remains their less-frequently used strategy.  
ARITHMETICAL UNDERSTANDING AND IMAGES 
A considerable body of research in psychology and mathematics education suggests 
that human beings vary in their cognitive style and in their approach to information 
processing. In 1976, Skemp made a first distinction between two different kinds of 
understanding: instrumental and conceptual. Hiebert and Lefevere (1986) made 
another distinction between procedural thinkers, those that prefer to follow a series of 
steps, a procedure, and conceptual thinkers, those that have a wider concept network, 
where different objects and procedures are related. Later on, Gray and Tall (1994) 
made a distinction between procedural and proceptual thinkers and compared their 
arithmetical understanding. Procedural thinkers are the ones that depend mainly on 
the use of procedures and proceptual thinkers are the ones that have the flexibility to 
view an arithmetical symbol either as a procedure or as a concept. According to Gray 
and Tall, low achievers seem to be trapped in a procedural way of thinking whereas 
those that succeed in mathematics have a proceptual way of thinking. Low achievers 
tend to depend on counting procedures such as count on or count back in order to 
answer a question. On the contrary, high achievers rely much less on procedures and 
they tend to retrieve known facts or derive new knowledge from what they already 
know. Gray and Tall hypothesized that this qualitative difference in children’s way of 
thinking arises from the different interpretation children give to arithmetical symbol. 
Pitta and Gray (1997) went a step further, by studying the different mental 
representations children project in arithmetic. They have studied children at the 
extremes of mathematical achievement, while dealing with mental arithmetic. Pitta 
and Gray described that high achievers tended to retrieve answers from memory and 
when visual images were present they appeared mainly as “flashing symbols” that 
acted as memory reminders. On the contrary, low achievers focused on physical or 
mental counting objects and executed counting procedures. 
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Nevertheless, it has been argued that children’s internal systems of representation of 
numbers go through a series of changes: from semiotic to autonomous (Thomas, 
Mulligan & Goldin, 1996). However, Pirie and Kieran (1994) indicated that a child’s 
powerful early attachments to particular dominant images can seriously influence the 
development of understanding. What happens in the case of a dyslexic child? Do a 
dyslexic child’s images in arithmetic change over time? And if so, what are the 
consequences for his or her understanding in arithmetic. 
METHODOLOGY 
For the purposes of the current study, a dyslexic boy, Aaron (pseudonym), was 
interviewed at the ages of seven (2001) and ten years (2004). Aaron had been 
diagnosed by both a private and a public educational psychologist as dyslexic. The 
private educational psychologist, who had examined Aaron at the age of seven, had 
performed the WISC-III test, according to which Aarons’ IQ score is 90 with a Full 
Scale score of 87 and is considered Average. His verbal IQ score of 95 with a Scaled 
score of 46 is also at the Average level, while his Performance IQ score of 86 with a 
Scaled score of 41 is at the Low Average level. The public educational psychologist’s 
tests and measures were school-confidential and were not acknowledged to the 
parents, they did confirm however that the child suffered from dyslexia. 
Ever since Aaron started second grade he had been getting support for his 
mathematics and Greek language by a public special educator. These support lessons 
were daily and were taking place during school-time. Their duration was 40 minutes. 
During an interview Aaron’s special educator described that, in her teaching, she 
emphasized the discovery of different procedures in arithmetic and that she indirectly 
proposed derived knowledge, instead of the memorisation of number facts.  
Two clinical interviews were performed. Each focused upon the strategies and 
images Aaron projected when responding to a graded series of elementary, context 
free arithmetical problems of addition and subtraction. The problems were subdivided 
into three sub-groups: Additions and subtractions up to 10, up to 20, and over 20 and 
with two-digit numbers. Aaron was presented with an arithmetical task verbally and 
he was first asked to give an answer and later to describe what was happening in his 
head as he was mentally trying to reach his answer. The classification of strategies 
used in this study followed a combination of the ones given by Pitta and Gray (1997), 
Geary (1993), and Garnett (1992) in arithmetical situations. The categories were (a) 
retrieval from memory (known facts), (b) counting strategy and (c) derived fact. 
More specifically, a response was classified as retrieved from memory when the child 
claimed that he knew it or just came to him and the response was given in less than 
three seconds. A counting strategy was recorded each time the child claimed he had 
counted in order to reach the answer or the interviewer had observed the implicit or 
explicit use of a counting procedure. The answer was classified as a derived fact 
when the child claimed he had based his solution on other known facts, for example 
“2+3 is 5, because I know 2+2 is 4 and plus 1 is five”. The kinds of images used in 
order to obtain the solution to any problem were classified as either physical or 
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Figure 1: Image of addition 
with dots

Figure 2: Subtraction 
with mental dots

Figure 3: Image of 
number line

Figure 4: Aaron's image of number 
line (2) 

imaginistic. They were physical when the interviewer observed the use of physical 
counters, such as fingers or other objects. Images were recorded each time the child 
claimed he had seen something in his mind which aided him to find the solution. 
RESULTS 
Aaron’s strategies and images at the age of seven 
When Aaron was interviewed at the age of seven, it was obvious that he was facing 
some serious difficulties arising from his relative slowness in simple calculations. 
This was mainly due to the procedures he used to answer the questions. Although 
most of the answers he gave to the easiest group of sums (up to 10) were correct, he 
seemed to over-rely on counting procedures. He solved 11 out of 15 using counting 
procedure, two of them with the use of a memory rule and only two as known facts. It 
is important to show the four calculations Aaron was able to solve without counting: 
4+4=, 0+2=, _+5=5, 6-0=. Note that no counting is required for the last three sums, 
the latter of which were solved by using a memory rule relevant to zero.  
When dealing with additions and subtractions to 10, Aaron relied greatly on the dots 
and numbers he saw in his mind. He described a number of different visual images he 
used while counting. One of his images is what he called “dots”. According to 

Aaron, while solving the sum 2+1=, he described that: 
There are two dots. And another one comes down 
hanging by a rope. And they come down one by one. 
Boing boing!                                                          (2+1) 

As he later explained, he first saw the larger addend in a row of dots. Then a number 
of dots, representing the smaller addend, came down one by one with a rope. Each 
time a dot came down, Aaron added up one to the larger addend. Aaron’s diagram 
describing his strategy and image for 3+1 is shown in Fig.1. 
A variation of the dots image was used in subtractions up to 
10. The difference was that the dots did not come down by 
rope, but were crossed out with Xs (see Figure 2): 

I had three dots and I crossed them out with Xs and finally there was only 
 one left.                 (3-2) 
Number line was another image described by Aaron (Fig.3). 
He said that he saw all numbers together and made steps 
backwards. This kind of image appeared only when he was 
dealing with subtractions.  
His image of a number line was modified when he had to do “9-_=1”:  

I went steps back and I saw numbers. 9 and then it 
went... and then was 8, a line, then 7, then 6, a line… I 
saw them one by one, so I don't make any mistakes, 
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and jump from 4 to 2. Here the numbers are like in boxes and I see the boxes 
one by one.                (9-_=1) 

Note that the direction of this number line is from left to right, while in its usual form 
and in Aaron’s previous example, the direction was from right to left. This may be 
evidence of the visual-spatial flexibility of dyslexic students which is documented by 
a number of researchers (Garnett, 1992) or evidence of dyslexic children’s tendency 
to mentally reverse symbols and icons.  
During the interviews it became apparent that Aaron had to put some effort in order 
to select the image that was most appropriate for each question. This is what he said:  

8; Wait, let me think…7. I went backwards again. First I tried dots, but I 
couldn't do it. Then I found an easier way to go backwards, until I reached 
one. I saw numbers!          (9-_=1)  

Moving on to additions and subtractions up to 20, Aaron started relying exclusively 
on finger counting. He admitted that counting dots and seeing numbers was too 
difficult for these numbers. So, he counted his fingers, first in a discreet way (that is 
trying to hide his hands under the table or behind his back) and later by putting his 
fingers in front of him. He was unable to reach a correct solution to 6 out of the 20 
cases. In two of these instances, Aaron seemed to have been confused in regard to the 
direction he had to count. This could be evidence of directional difficulty which is 
considered as symptom of dyslexia (Stasinos, 1992; Gagatsis, 1997; Gagatsis, 1999): 

I need my fingers for this one.15 minus 4… It’s 19.                          (15-4) 
15 minus… I need my hands again… It’s 24!                           (15-9) 

In all the subtractions, Aaron started from the smaller number and counted on to the 
larger number to reach the answer. This “recipe”, which resembles Hiebert’s and 
Lefevere’s (1986) procedural thinking, seemed convenient, until Aaron reached a 
subtraction where the minuend was missing.  

It’s 4. I went 8, 9, 10, 11, 12.                                  (_-8=12) 
There were also some indications that the counting procedure was leading him to 
some errors. For example in 16-3: 

It’s 12. I went 15, 13, 12.                                     (16-3=) 
In the cases of sums over 20, Aaron followed the same strategy as with the sums up 
to 20, counting. In all four two-digit sums, Aaron failed to give any correct answers. 
He did attempt to answer these questions by counting either with dots or fingers, but 
his strategy failed.  
Aaron’s strategies and images at the age of ten 
When Aaron was interviewed at the age of ten, he seemed more confident and able to 
answer more questions immediately. Especially in the first group of sums up to 10, he 
answered nine out of the 15 sums by retrieving the answer from memory. It is 
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important, though, to report the sums Aaron responded to immediately. These were 
2+1, 3-2, 5-4, 0+2, _+5=5, 6-0, 3-3, 4+4, 8+2. Notice that the first three sums 
concern successive numbers and can be solved with the mere recall of the number 
sequence. The next four sums can be solved without counting, the latter of which can 
be solved with the use of a memory rule. The sum 4+4 is considered by Garnett 
(1992) as one of the easiest sums since only two numbers (instead of three) need to 
be recalled, the addend and the sum. Finally, the last one is a pair that adds up to 10. 
Teachers in Cyprus put a lot of emphasis on this type of sums.  
When Aaron couldn’t retrieve the answer to a sum up to 10, he relied on counting 
procedures. These counting procedures were supported by images that represented 
mental counters. The first type of counters Aaron described was the “little lines” 
along with the numbers he sees in his mind. According to Aaron, when he solved 
3+5, he saw the operation in his mind, and completed it by 
counting the little lines which appeared below the numbers.  
I saw three little lines… And five little lines under 5… equals 8. 
So I said 1, 2, 3, 4, 5, 6, 7, 8.                       (3+5) 
Note that the symbol 3 in Figure 5 is mirrored. This is an 
example of dyslexics’ tendency to reverse and mirror symbols. (B.D.A., 2004). 
As soon as Aaron responded to this question, he claimed that another kind of image 

came to his mind. He argued that, since he wanted to be really sure 
about his answer, he had to check it once more by using another 
“way”: the “fingers in his mind” (Figure 6).  
I forgot all about these (the mental lines) and then I saw three 
fingers. Three fingers and five fingers and I did it. It was 8, but I 
didn’t see eight fingers, I saw the number 8.             (3+5) 

When Aaron was asked to explain why he uses both ways and whether they appeared 
at the same time, he responded: 

Because I could have made a mistake here (the lines) and I did this to be sure. 
But very fast! First this one goes (the lines) and the other comes.              (3+5) 

When asked which of the two methods was easier, Aaron chose his mental fingers.  
It’s because when I was little, I couldn’t find it, so I put up my fingers and got 
the answer. Now I see them in my mind… I am used to it and I do it to be sure. 
Like if I find 8, and then I do this to be sure. I just look at them and I know it’s 
eight!                     (3+5) 

What Aaron was essentially doing is a “mental subitizing”. This means he was able to 
determine the number of objects in a group without counting but simply by looking at 
the group of objects. This is often done when a child puts up his or her fingers to 
represent the addends of an arithmetical question. The difference here being that the 
procedure was imaginistic and not physical.  

Figure 5: Aaron’s 
representation of lines

Figure 6: Aaron’s 
mental fingers 
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His mental fingers strategy was modified when one of the addends was missing. 
Aaron described seeing the first addend and the result in mental fingers. Then, he 
visually recognized the difference and reached the answer. 
They showed (the mental fingers) six and nine. And I had to 
figure out from 6 to 9 how many, and I did. They were split 
up, one was on this side and the other on the other side, and 
I had some space in the middle to find it.              (6+_=9) 
This strategy of visually comparing and recognizing the difference in the amount was 
very convenient for Aaron, but it seems that it was once more a well-rehearsed 
procedure which, however, he did not fully understand. This became apparent when 
he had to respond to the question _-5=2. The answer he gave was 3:  

I just did it with my fingers, nothing else. Like I showed you earlier. I had some 
space here in the middle and five… I said 2 up to five, and found 3.     (_-5=2) 

In only one case of sums up to 10, Aaron applied a derived fact strategy. He used the 
well-known 5+5=10 sum to derive the answer to 9-5. 

Since 5+5 is 10, minus 1…I did it fast and then I said, 10 minus 5 is 5. So, 9 
minus 5 is 4!                (9-5) 

What was interesting was that Aaron needed to visualize the sum, even if it was a 
known fact. It is hypothesized that this need is a spontaneous reaction that emerges 
from his difficulty to retain information in his memory.  

I had it written there. 9 minus 5, and I saw it written in the air. I knew the 
answer, but I still saw it up there.             (9-5) 
I didn’t do anything. I went to write… I wrote 3 in my mind, but then it came to 
me!  All of a sudden!                  (3-2) 

Moving on to additions and subtractions up to 20, Aaron managed to solve 1 by 
retrieving the answer directly from his memory, 6 as derived facts and 13 by 
counting. He claimed that he first tried his mental fingers, but they were inconvenient 
for such large numbers. Then he suddenly remembered his derived fact strategy, 
which he applied for several times in a sequence. It is important to note that Aaron 
applied the derived fact strategy, directly after stating that his teacher did not approve 
of finger counting. 

I got used to doing it with fingers and it helps me more…When I was little, all I 
knew how to use were my fingers. My teacher, Mrs. M, told me not to use them. 
I tried and I tried and I could do it for a while. But then I would again use my 
fingers…Now I see them in my mind. But I prefer to do it with my fingers. 

Let us take a look at which sums Aaron managed to solve without counting. The only 
sum he could retrieve from his memory was 10+2. Later on, he described the memory 
rule which helped him retrieve sums which included the number ten.  

Figure 7: Aaron’s addition 
with mental fingers
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It is easy because it has 10 in it… When you do 10 and something, for example 
10 and three, it’s 13 because it goes next to 10.      

Aaron sometimes used a derived fact strategy which is based on the knowledge of the 
sums with the same number. His strategy is described below: 
 9 plus 8 is 17. Because 9 plus 9 is 18, minus 1 is 17.   (9+8) 
The first strategy Aaron attempted to apply for sums 
up to 20 was to count with mental fingers. As he 
described, he saw the first addend, which was a two-
digit number, in symbols and the second addend in 
mental fingers (Figure 8).  

I saw 13 and then five fingers…1, 2, 3, 4, 5. And I found 18.     (13+5) 
As sums got more difficult, Aaron abandoned his derived fact strategy and fell back 
to his counting strategy. First he tried verbal counting. Then he started using his 
fingers. In some cases he tried to hide the fact by putting his hands under the table. In 
some instances, though, it was so difficult for him that he had to put his hands in front 
of him in order to assure himself that he had the right answer. 

7; I went from 8 to 14. I said 8, 9, 10, 11, 12, 13, 14. Is it right? I don’t know. I 
have to think… I’ll do it with my fingers. 9, 10, 11, 12, 13, 14. It’s 6!  (8+_=14) 

In all the subtractions, Aaron used the count-back strategy. He supported his strategy 
with a mental number line, so that he would not loose track of the numbers counted. 
It is assumed that a mental image was necessary for him in order to count backwards. 
What is interesting in Aaron’s use of number line is 
that when he counted back numbers, in order to keep 
count of how many numbers he had counted, he took 
them in pairs. Thus halving the numbers he had to 
remember (Fig. 9).    
Aaron managed to solve mentally and correct all two-digit sums, by adding first the 
tens and then the units.  
Summing up, we can see in Table 1 that Aaron’s known facts increased from 3 to 10 
and his derived facts from 2 to 12. It is hypothesized that this change has contributed 
to the increase of Aaron’s correct responses from 29 to 39. However, it is noteworthy 
that although his counting strategies had decreased, they still constituted Aaron’s 
most frequently used strategy. This finding is in accord with previous studies by 
Geary et al. (2000) and Jordan and Hanich (2003). 
Table 1: Aaron’s strategies and correct responses at age 7 and 10 

(N=42) Retrieval Counting Derived No response Correct  
7 years 3 32 2 5 29 

10 years 10 20 12 0 39 

Figure 8: Aaron’s addition up to 
20 with mental fingers

Figure 9: Aaron’s mental 
number line 
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In Table 2, we can see Aaron’s representations at age 7 and 10. His need for physical 
representations had dropped from 22 to 5. It also appears that at the age of 10, Aaron 
solved most sums without the use of any physical counters or images. This is mainly 
due to the fact that a lot of responses are now retrieved automatically from memory.  
Table 2: Aaron’s representations at age 7 and 10 

(N=42) Physical Visual Images None 
7 years 22 9 11 

10 years 5 11 26 
DISCUSSION AND CONCLUSIONS 
At the age of 7, Aaron relied mainly on his counting strategies. He seemed to have 
the need to translate the numbers of an operation into concrete items, either physical 
or imaginistic, in order to count them. Such behaviour would fit the profile of a 
procedural thinker, as described by Gray and Tall (1994). In addition to this, Aaron 
seemed to have the need to visualize what he was doing and then count it, in order to 
be confident that he was doing it right. Geary (2000) refers to this tendency of 
dyslexics as a “rigorous confidence criterion”. Similar behaviour was exhibited at the 
age of ten, although the use of counting procedures was reduced. Despite this 
reduction, the counting procedure remained his most frequently used strategy. He 
continued to support his counting with his fingers and a variety of visual images. At 
the age of ten his use of fingers was significantly reduced whereas the use of images 
remained almost at the same level. Furthermore, as he grew older he tried to focus on 
derived facts and avoid using his fingers. Eventually, as he admitted, he did what he 
felt more comfortable with. It is hypothesized, that the pressure on Aaron not to use 
his fingers led him to create this plethora of images. It appears to be his attempt to do 
things in the “head”. We do not argue that all dyslexic children project visual images. 
As we have already stated at the beginning of the study, dyslexic children comprise a 
heterogonous group of students. Further research with a large group of dyslexic 
students is needed in order to answer whether dyslexic children have a tendency to 
create a lot of visual images in arithmetic. 
Although Aaron’s mistakes in counting were reduced from the age of seven to the 
age of ten, all of his incorrect responses arose from his counting. It appears that the 
images that replaced the external fingers did not cause any shift to a qualitative 
different kind of thinking. Aaron’s thinking continued to be in a large extent 
procedural. It is conjectured that Aaron’s increase of known and derived facts is what 
mainly contributed to the increase of his correct responses. Therefore, it is suggested 
that teaching arithmetic to dyslexics should not only emphasize the reduction in the 
use of counters (i.e. fingers), but also on building an understanding of the nature of 
numbers and their relations, as part of deriving new knowledge. 
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